Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2025 Volume 4 Issue 1
Article Contents

MA Zijun, WU Yaqian, JIN Xin, et al. Evaluation of Scopoletin and Daphnetin for Induction of Citrus Resistance to Canker Disease[J]. PLANT HEALTH AND MEDICINE, 2025, 4(1): 20-27. doi: 10.13718/j.cnki.zwyx.2025.01.003
Citation: MA Zijun, WU Yaqian, JIN Xin, et al. Evaluation of Scopoletin and Daphnetin for Induction of Citrus Resistance to Canker Disease[J]. PLANT HEALTH AND MEDICINE, 2025, 4(1): 20-27. doi: 10.13718/j.cnki.zwyx.2025.01.003

Evaluation of Scopoletin and Daphnetin for Induction of Citrus Resistance to Canker Disease

More Information
  • Corresponding author: DING Wei ; 
  • Received Date: 06/06/2024
    Available Online: 25/02/2025
  • MSC: S482

  • Citrus canker disease is one of the most serious bacterial diseases in citrus production. Green controlwith resistance-inducer is an important means of biological control of the disease. In this study, we mainly investigated the effect of Scopoletin and Daphnetin on the control of citrus canker disease.The effects of Scopoletin and Daphnetin on the citrus canker pathogens and the activity of citrus defense enzymes were detected by setting clear water treatment as the control. The results showed that Scopoletin and Daphnetin had no direct inhibition effect on Xanthomonas citri subsp. citri. The enzyme activities of POD, PAL, and CAT were significantly elevated after treatment with Scopoletin and Daphnetin compared to controls at 8-24 hours post-treatment, suggesting these compounds may induce and activate the immune response in citrus plants, thereby enhancing their resistance.In the field test, the control effect of Scopoletin treatment on citrus canker disease reached 62. 07% and that ofDaphnetin treatment was 75.86%;Scopoletin and Daphnetin treatment slowed down the growth of the canker disease index and effectively slowed down the spread of canker disease, which has a certain preventive effect.

  • 加载中
  • [1] GOTTWALD T R. Citrus Canker and Citrus Huanglongbing, Two Exotic Bacterial Diseases Threatening the Citrus Industries of the Western Hemisphere[J]. Outlooks on Pest Management, 2007, 18(6): 274-279. doi: 10.1564/18dec09

    CrossRef Google Scholar

    [2] SHAHBAZ E, ALI M, SHAFIQ M, et al. Citrus Canker Pathogen, Its Mechanism of Infection, Eradication, and Impacts[J]. Plants, 2022, 12(1): 123. doi: 10.3390/plants12010123

    CrossRef Google Scholar

    [3] NAQVI S A H, WANG J, MALIK M T, et al. Citrus Canker—Distribution, Taxonomy, Epidemiology, Disease Cycle, Pathogen Biology, Detection, and Management: A Critical Review and Future Research Agenda[J]. Agronomy, 2022, 12(5): 1075. doi: 10.3390/agronomy12051075

    CrossRef Google Scholar

    [4] DAS A K. Citrus Canker -A Review[J]. Journal of Applied Horticulture, 2003, 5(1): 52-60. doi: 10.37855/jah.2003.v05i01.15

    CrossRef Google Scholar

    [5] FU H Y, ZHAO MM, XU J, et al. Citron C-05 Inhibits both the Penetration and Colonization of Xanthomonas citri subsp. citri to Achieve Resistance to Citrus Canker Disease[J]. Horticulture Research, 2020, 7(1): 58. doi: 10.1038/s41438-020-0278-4

    CrossRef Google Scholar

    [6] WEI C D, DING T, CHANG C Q, et al. Global Regulator PhoPIs Necessary for Motility, Biofilm Formation, Exoenzyme Production and Virulence of Xanthomonas citri subsp. citri on Citrus Plants[J]. Genes, 2019, 10(5): 340. doi: 10.3390/genes10050340

    CrossRef Google Scholar

    [7] ALI S, HAMEED A, MUHAE-UD-DIN G, et al. Citrus Canker: A Persistent Threat to the Worldwide Citrus Industry—An Analysis[J]. Agronomy, 2023, 13(4): 1112. doi: 10.3390/agronomy13041112

    CrossRef Google Scholar

    [8] GOCHEZ A M, BEHLAU F, SINGH R, et al. Panorama of Citrus Canker in the United States[J]. Tropical Plant Pathology, 2020, 45(3): 192-199. doi: 10.1007/s40858-020-00355-8

    CrossRef Google Scholar

    [9] QIAN J L, ZHANG T, TANG S, et al. Biocontrol of Citrus Canker with Endophyte Bacillus amyloliquefaciens QC-Y[J]. Plant Protection Science, 2020, 57(1): 1-13. doi: 10.17221/62/2020-PPS

    CrossRef Google Scholar

    [10] RABBEE M F, ALI M S, BAEK K H. Endophyte Bacillus velezensis Isolated from Citrus spp. Controls Streptomycin-Resistant Xanthomonas Citri subsp. citri that Causes Citrus Bacterial Canker[J]. Agronomy, 2019, 9(8): 470. doi: 10.3390/agronomy9080470

    CrossRef Google Scholar

    [11] RABBEE M F, ISLAM N, BAEK K H. Biocontrol of Citrus Bacterial Canker Caused by Xanthomonas Citri subsp. citri by Bacillus velezensis[J]. Saudi Journal of Biological Sciences, 2022, 29(4): 2363-2371. doi: 10.1016/j.sjbs.2021.12.005

    CrossRef Google Scholar

    [12] GOTTWALD T R, GRAHAM J H, SCHUBERT T S. Citrus Canker: The Pathogen and Its Impact[J]. Plant Health Progress, 2002, 3(1): 15. doi: 10.1094/PHP-2002-0812-01-RV

    CrossRef Google Scholar

    [13] ALFEREZ F M, GERBERICH K M, LI J L, et al. Exogenous Nicotinamide Adenine Dinucleotide Induces Resistance to Citrus Canker in Citrus[J]. Frontiers in Plant Science, 2018, 9: 1472. doi: 10.3389/fpls.2018.01472

    CrossRef Google Scholar

    [14] HASABI V, ASKARI H, ALAVI S M, et al. Effect of Amino Acid Application on Induced Resistance Against Citrus Canker Disease in Lime Plants[J]. Journal of Plant Protection Research, 2014, 54(2): 144-149. doi: 10.2478/jppr-2014-0023

    CrossRef Google Scholar

    [15] LI C, HE Q L, ZHANG F, et al. Melatonin Enhances Cotton Immunity to Verticillium Wilt via Manipulating Lignin and Gossypol Biosynthesis[J]. The Plant Journal, 2019, 100(4): 784-800. doi: 10.1111/tpj.14477

    CrossRef Google Scholar

    [16] BEYER S F, BEESLEY A, ROHMANN P F W, et al. The Arabidopsis Non-Host Defence-Associated Coumarin Scopoletin Protects Soybean from Asian Soybean Rust[J]. The Plant Journal, 2019, 99(3): 397-413. doi: 10.1111/tpj.14426

    CrossRef Google Scholar

    [17] 王群娣, 赵晨露, 王旭婷, 等. 天然柑橘香豆素的分布、提取分析及生物活性研究进展[J]. 食品与发酵工业, 2024, 50(8): 343-355.

    Google Scholar

    [18] 刘瑾林, 周红, 郭富友, 等. 香豆素类化合物的农药活性及东莨菪内酯杀螨作用机理研究进展[J]. 农药学学报, 2019, 21(5): 692-708.

    Google Scholar

    [19] 杨亮. 羟基香豆素类化合物对青枯雷尔氏菌致病特性的调控作用研究[D]. 重庆: 西南大学, 2020.

    Google Scholar

    [20] 韩松庭. 瑞香素诱导烟草对青枯病的抗性及其作用机理研究[D]. 重庆: 西南大学, 2021.

    Google Scholar

    [21] 崔伟伟. 东莨菪内酯诱导烟草对青枯病的抗性及其作用机理研究[D]. 重庆: 西南大学, 2014.

    Google Scholar

    [22] 李吉秀, 朱晓伟, 王叶, 等. 0.53%瑞香素乳油诱导烟草抗青枯病的效果[J]. 植物医学, 2023, 2(5): 33-40.

    Google Scholar

    [23] DÖLL S, KUHLMANN M, RUTTEN T, et al. Accumulation of the Coumarin Scopolin under Abiotic Stress Conditions Is Mediated by the Arabidopsis Thaliana THO/TREX Complex[J]. The Plant Journal, 2018, 93(3): 431-444. doi: 10.1111/tpj.13797

    CrossRef Google Scholar

    [24] 韩松庭, 漆夏燕, 王开宇, 等. 植物诱抗剂与拮抗菌剂联用对烟草生长及青枯病的影响[J]. 植物医生, 2019(6): 52-57.

    Google Scholar

    [25] ROBE K, IZQUIERDO E, VIGNOLS F, et al. The Coumarins: Secondary Metabolites Playing a Primary Role in Plant Nutrition and Health[J]. Trends in Plant Science, 2021, 26(3): 248-259. doi: 10.1016/j.tplants.2020.10.008

    CrossRef Google Scholar

    [26] 王曼. 两个苹果品种叶片接种褐斑菌后抗病相关酶活性变化研究[D]. 杨凌: 西北农林科技大学, 2013.

    Google Scholar

    [27] 李睿光. 油菜浸提液对5种作物生长及防御酶活性的影响[D]. 呼和浩特: 内蒙古农业大学, 2020.

    Google Scholar

    [28] LANNA-FILHO R, SOUZA R M, ALVES E. Induced Resistance in Tomato Plants Promoted by Two Endophytic Bacilli Against Bacterial Speck[J]. TropicalPlantPathology, 2017, 42(2): 96-108.

    Google Scholar

    [29] DE PAULA S, HOLZ S, SOUZA D H G, et al. Potential of Resistance Inducers for Soybean Rust Management[J]. Canadian Journal of Plant Pathology, 2021, 43(sup2): S298-S307. doi: 10.1080/07060661.2021.1977999

    CrossRef Google Scholar

    [30] QIUD W, DONGY J, ZHANGY, et al. Plant Immunity Inducer Development and Application[J]. Molecular Plant-Microbe Interactions, 2017, 30(5): 355-360. doi: 10.1094/MPMI-11-16-0231-CR

    CrossRef Google Scholar

    [31] CZERWONIEC P. New Plant Resistance Inducers Based on Polyamines[J]. Open Chemistry, 2022, 20(1): 1591-1600. doi: 10.1515/chem-2022-0261

    CrossRef Google Scholar

    [32] RAJENDRAN L, AKILA R, KARTHIKEYAN G, et al. Defense Related Enzyme Induction in Coconut by Endophytic Bacteria (EPC 5)[J]. Acta Phytopathologica et EntomologicaHungarica, 2015, 50(1): 29-43. doi: 10.1556/038.50.2015.1.4

    CrossRef Google Scholar

    [33] ZHOU J, WANG L, WEI L, et al. Synthesis and Antitumor Activity of Scopoletin Derivatives[J]. Letters in Drug Design & Discovery, 9(4): 397-401.

    Google Scholar

    [34] HE B T, LIU Z H, LI B Z, et al. Advances in Biosynthesis of Scopoletin[J]. Microbial Cell Factories, 2022, 21(1): 152. doi: 10.1186/s12934-022-01865-7

    CrossRef Google Scholar

    [35] 杨亮, 姚晓远, 丁伟. 香豆素类化合物的抑菌活性研究[J]. 天然产物研究与开发, 2018, 30(2): 332-338.

    Google Scholar

    [36] 侯秋莉, 杨振国, 丁伟, 等. 东莨菪内酯的生物活性研究进展[J]. 天然产物研究与开发, 2013, 25(10): 1461-1467.

    Google Scholar

    [37] 杨振国, 张永强, 丁伟, 等. 东莨菪内酯与双脱甲氧基姜黄素对朱砂叶螨毒力的温度效应[J]. 昆虫学报, 2012, 55(4): 420-425.

    Google Scholar

    [38] BENOIT GNONLONFIN G J, SANNI A, BRIMER L. Review Scopoletin- A Coumarin Phytoalexin with Medicinal Properties[J]. Critical Reviews in Plant Sciences, 2012, 31(1): 47-56. doi: 10.1080/07352689.2011.616039

    CrossRef Google Scholar

    [39] EL OIRDI M, TRAPANI A, BOUARAB K. The Nature of Tobacco Resistance Against Botrytis cinerea Depends on the Infection Structures of the Pathogen[J]. Environmental Microbiology, 2010, 12(1): 239-253. doi: 10.1111/j.1462-2920.2009.02063.x

    CrossRef Google Scholar

    [40] 杨亮, 韩松庭, 李吉秀, 等. 瑞香素对烟草青枯病的防治效果及其作用机理[J]. 植物保护学报, 2024, 51(3): 709-718.

    Google Scholar

    [41] 赵世元. 黄腐酸诱导烟草抗青枯病的活性及初步机理研究[D]. 重庆: 西南大学, 2020.

    Google Scholar

    [42] 程小龙. 外源水杨酸诱导烟草抗青枯病的作用及机理研究[D]. 重庆: 西南大学, 2014.

    Google Scholar

    [43] 张煦, 李捷, 冯丽丹, 等. 3种抗病诱导剂对宁夏枸杞生长、抗病性及相关酶活性的影响[J]. 云南农业大学学报(自然科学), 2022, 37(3): 413-421.

    Google Scholar

    [44] 杨枫. 多胺在提高柑橘溃疡病抗性中的作用及其机理研究[D]. 武汉: 华中农业大学, 2014.

    Google Scholar

    [45] LONG Q, XIE Y, HE Y R, et al. Abscisic Acid Promotes Jasmonic Acid Accumulation and Plays a Key Role in Citrus Canker Development[J]. Frontiers in Plant Science, 2019, 10: 1634. doi: 10.3389/fpls.2019.01634

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  /  Tables(1)

Article Metrics

Article views(940) PDF downloads(29) Cited by(0)

Access History

Other Articles By Authors

Evaluation of Scopoletin and Daphnetin for Induction of Citrus Resistance to Canker Disease

    Corresponding author: DING Wei ; 

Abstract: 

Citrus canker disease is one of the most serious bacterial diseases in citrus production. Green controlwith resistance-inducer is an important means of biological control of the disease. In this study, we mainly investigated the effect of Scopoletin and Daphnetin on the control of citrus canker disease.The effects of Scopoletin and Daphnetin on the citrus canker pathogens and the activity of citrus defense enzymes were detected by setting clear water treatment as the control. The results showed that Scopoletin and Daphnetin had no direct inhibition effect on Xanthomonas citri subsp. citri. The enzyme activities of POD, PAL, and CAT were significantly elevated after treatment with Scopoletin and Daphnetin compared to controls at 8-24 hours post-treatment, suggesting these compounds may induce and activate the immune response in citrus plants, thereby enhancing their resistance.In the field test, the control effect of Scopoletin treatment on citrus canker disease reached 62. 07% and that ofDaphnetin treatment was 75.86%;Scopoletin and Daphnetin treatment slowed down the growth of the canker disease index and effectively slowed down the spread of canker disease, which has a certain preventive effect.

  • 开放科学(资源服务)标识码(OSID):

  • 柑橘溃疡病是柑橘种植过程中危害最大的细菌性病害之一,由柑橘黄单胞菌柑橘亚种(Xanthomonas citri subsp. citri,Xcc) 引发,可对柑橘产业造成重大经济损失[1-7]。目前,柑橘溃疡病尚无根治方法,大多数柑橘种植区均以化学防治为主,且柑橘品种与该病害的发生密切相关[8]。在柑橘溃疡病的绿色防控方面,当前主要运用抗性品种栽培、生防微生物以及抗性诱导剂等技术措施 [2, 9-12]。然而,用于柑橘溃疡病防治的抗性诱导剂数量种类有限,如烟酰胺腺嘌呤二核苷酸、氨基酸甲硫氨酸等处理均能提高柑橘树对溃疡病的抗性[13-14]

    近年来,众多研究表明抗性诱导剂可以诱导植物的抗病性,减少植物病害进一步发展蔓延[15-16]。天然香豆素类化合物是一类存在于芸香科、菊科、豆科等植物中的次生代谢产物,常以游离态或糖苷化形态存在,香豆素的生物合成在植物响应逆境胁迫中发挥着重要作用[17-18]。研究表明,香豆素类化合物具有抗菌和诱导植物抗性的作用[19]。有学者发现,东莨菪内酯和瑞香素是能够诱导植物产生抗性的化合物[20-22]。香豆素类化合物中的东莨菪内酯和瑞香素,在植物体内具有抗氧化作用,可以激活烟草、大豆、棉花、番茄等植物的抗性,帮助其抵御病害[23-25]。本研究从诱导植物抗性的角度出发,探究东莨菪内酯和瑞香素对柑橘抗性的影响,评估二者对柑橘溃疡病的防治效果,为防治柑橘溃疡病挖掘新的抗性诱导剂。

1.   材料与方法
  • 柑橘叶片样本来自重庆西南大学植物保护学院天然产物农药研究室温室种植的脐橙。脐橙是易感病品种,与田间试验品种一致。

  • 供试病原菌为柑橘黄单胞菌柑橘亚种(Xanthomonas citri subsp. citri,Xcc),柑橘溃疡病病菌由上海交通大学农业与生物学院陈功友老师实验室提供。

  • 东莨菪内酯(Scopoletin,SC,98%)购于北京索莱宝生物科技有限公司;瑞香素(Daphnetin,DA,98%)购于上海源叶生物科技有限公司;过氧化氢酶(CAT)试剂盒、过氧化物酶(POD)试剂盒、苯丙氨酸解氨酶(PAL)试剂盒均购于北京索莱宝生物科技有限公司。UV1000型单光束紫外-可见分光光度计购于上海天美科学仪器有限公司;1500型全波长酶标仪购于美国Thermo公司。

    LB培养基(胰蛋白胨10 g/L、酵母膏5 g/L、NaCl 10 g/L);NA培养基(蛋白胨5 g/L,酵母膏1 g/L,牛肉膏3 g/L,葡萄糖10 g/L,琼脂15 g/L),实验所用培养基配制完成后,于121 ℃条件下高压灭菌20 min。

  • 在LB液体培养基上活化培养已保存的柑橘溃疡病菌,置于28 ℃、180 r/min旋转震荡器中,培养至OD600为0.8~1.0,待后续实验使用。取100 mL的NA培养基待冷至45 ℃(可用手拿起即可),加入东莨菪内酯或瑞香素轻轻摇动,混合均匀,每个培养皿约加入10 mL带抗性诱导剂的培养基,待培养基完全冷却凝固。每个平板滴加3个呈三角形分布的病原菌菌点,然后在28 ℃条件下培养24 ~48 h,观察平板上病原菌的生长情况。

  • 将东莨菪内酯和瑞香素分别喷施在离体干净健康的脐橙叶片上,分别于4、8、12、24和48 h共5个时间点进行随机采样,液氮冷冻后保存于-80 ℃冰箱。叶片采集的时间参照王曼[26]的方法。

    处理1:东莨菪内酯(16 μmol/L);处理2:瑞香素(16 μmol/L);处理3:清水对照处理。

    通过对植物抗性相关防御酶的活性检测,如苯丙氨酸解氨酶、过氧化物酶、过氧化氢酶等,验证东莨菪内酯和瑞香素对柑橘植株抗病性的影响[26-32]

    取待测样品置于液氮冷浴的研钵中研磨至粉末,然后取0.1 g于无酶管中,缓慢加入1 mL对应提取液处理样品,冰浴匀浆,4 ℃离心10 min,取上清液即为粗酶液,置于冰上待测。按照酶活试剂盒说明书测定CAT、PAL和POD活性。

  • 试验在重庆市奉节县康乐镇柑橘种植园区开展(31°07′N,109°23′E,海拔300~400 m)。试验共设5个处理,每个处理设置3个小区,每个小区有4株柑橘树,处理小区采用随机区组排列法。各小区的品种、树龄、树势、管理水平等均基本一致。

    处理1:喷施浓度为16 μmol/L的东莨菪内酯;处理2:喷施浓度为16 μmol/L的瑞香素;处理3:喷施清水作为对照处理。

    对柑橘植株进行整株喷施处理,每15 d喷施一次,共喷施2次。此外,根据柑橘溃疡病的实际发生情况酌情用药。

    病害调查:参照GB/T 17980.103—2004调查溃疡病发生情况。在每株果树的东、西、南、北4个方位各调查2个枝梢的全部叶片以及5个果实,记录枝梢、叶片和果实上溃疡病的发病情况,包括调查的总果数、各级病果数等,以便计算病情指数。

    叶(果)病斑分级标准如下:

    0级:每个叶片(果)上均无病斑;1级:每个叶片(果)上有1~5个病斑;3级:每个叶片(果)上有6~10个病斑;5级:每个叶片(果)上有11~15个病斑;7级:每个叶片(果)上有16~20个病斑;9级:每个叶片(果)上有21个以上。

    发病率(%)=病叶(果)数/调查的总叶(果)数×100%

    病情指数=[Σ(各级病叶(果)数×相对级数值)]/[调查总叶(果)数×9]×100

    防治效果(%)=(对照组病情指数-处理组病情指数)/对照组病情指数×100%

  • 使用Excel 2016整理汇总数据,使用IBM SPSS Statistics 24进行方差分析以及显著性检验(p < 0.05),使用GraphPad Prism9绘图。

2.   结果与分析
  • 平板试验检测东莨菪内酯和瑞香素对柑橘溃疡病菌生长的影响,结果如图 1所示。由图 1可知,病原菌Xcc可以在含有抗性诱导剂东莨菪内酯和瑞香素的平板上正常生长,表明抗性诱导剂SC和DA对柑橘溃疡病菌不存在直接的抑制作用,需进一步研究二者对柑橘植株的作用及其对柑橘溃疡病防治效果。

  • 采集经抗性诱导剂东莨菪内酯和瑞香素处理后的样品,通过试剂盒检测植物防御酶活性,结果如图 2所示。由图 2可知,柑橘叶片过氧化物酶活性在东莨菪内酯、瑞香素处理后的48 h内均呈现先上升后下降的趋势,在12 h活性最高,分别为1 473.33 U/g和1 410 U/g,显著高于对照组的1 173.33 U/g。柑橘叶片苯丙氨酸解氨酶(PAL)活性在东莨菪内酯、瑞香素处理后的48 h内均呈现先上升后下降的趋势,东莨菪内酯处理后在24 h活性达到最高,酶活性为41.31 U/g;瑞香素处理后在12 h酶活性最高,酶活性达到43.10 U/g,显著高于对照处理的酶活性。柑橘叶片过氧化氢酶活性在东莨菪内酯处理后8 h达到最高水平,为162.72 U/g,处理12 h酶活性为117.52 U/g,8 h和12 h活性均显著高于对照处理,表明SC处理对柑橘CAT活性影响持久。瑞香素处理后,CAT在处理后12 h活性达到最高水平,为131.08 U/g,处理后24 h活性为110.74 U/g,均显著高于对照处理的酶活性;DA处理在12~24 h内CAT维持较高的活性。柑橘防御酶的活性变化表明,抗性诱导剂东莨菪内酯(SC)和瑞香素(DA)处理诱导激活柑橘免疫系统,提高了柑橘的抗性。

  • 田间试验表明施用抗性诱导剂东莨菪内酯和瑞香素会对柑橘溃疡病发生的影响。田间试验地块柑橘溃疡病发生的平均病情指数达到0.50,喷施后15 d调查病害发生情况。抗性诱导剂东莨菪内酯和瑞香素处理后柑橘溃疡病的病情指数如图 3所示。抗性诱导剂喷施处理后,柑橘溃疡病发展蔓延趋势被遏制,尤其是东莨菪内酯。第一次东莨菪内酯处理后,柑橘溃疡病病情指数为0.62,瑞香素处理后的柑橘溃疡病病情指数为0.309,相较于未处理组的1.42,柑橘溃疡病发生情况明显减轻。第二次处理后柑橘溃疡病发生延缓,其中东莨菪内酯处理的病情指数为0.679,相比于第一次试验处理后,病情指数仅增加0.062,瑞香素处理病情指数为0.432,相比于第一次试验处理后,病情指数仅增加0.123,对照处理病情指数增加0.37。最终,东莨菪内酯处理的防治效果为62.07%,瑞香素处理防治效果为75.86%(表 1)。这是由于抗性诱导剂东莨菪内酯和瑞香素处理激活了柑橘的免疫系统,柑橘抗性得到提升,阻止了柑橘溃疡病的进一步蔓延。结果表明,柑橘植株在经过抗性诱导剂东莨菪内酯和瑞香素处理后,柑橘溃疡病的蔓延程度明显减轻。

3.   讨论
  • 香豆素类化合物东莨菪内酯和瑞香素源自于植物,在医药领域具有重要的应用价值,由于具有良好的杀虫、抗菌杀菌、杀螨等生物活性,因而在植物病虫害防控中也具有重要作用[18, 33-36]。东莨菪内酯具有杀螨作用,在亚致死剂量下能使朱砂叶螨种群的发育和繁殖速率降低,且不易产生抗药性[37]。当植物受到病原菌或外来物质刺激时,会合成更多的东莨菪碱内酯,从而提高植物的抗性[38]。有研究表明,0.5 mg/mL的东莨菪内酯能够抑制烟草灰霉病菌的孢子萌发和菌丝生长[39]。另有研究表明,抗性诱导剂处理可以诱导激活植物免疫系统,提高植物抗性相关防御酶活性。POD、PPO、PAL、CAT是植物体内主要的植物抗性防御酶,其活性与植物的抗性变化密切相关。杨亮等[40]研究发现,瑞香素能显著提高烟草体内PPO、PAL和POD的活性,从而有效防控烟草青枯病的发生。外源施用水杨酸、黄腐酸等可以显著提升烟草体内的POD、PAL等多种防御酶活性[41-42]。茉莉酸甲酯(MeJA)、乙酰水杨酸(ASA)和β-氨基丁酸(BABA)等抗性诱导剂可以提高植物抗性相关防御酶活性,提高植物抗病性;叶面喷施0.3 mmol/L茉莉酸甲酯,诱导3次可显著降低宁杞7号叶斑病的自然发病率和病情指数[43]。本研究发现,东莨菪内酯和瑞香素对柑橘溃疡病菌没有杀菌或抑菌作用,但经东莨菪内酯和瑞香素处理12 h和24 h后,POD、PAL和CAT的活性提高。本研究表明,抗性诱导剂东莨菪内酯(SC)和瑞香素(DA)的田间应用能增强植物抗性相关防御酶活性,降低柑橘溃疡病的蔓延速度,但不能治疗已经发生柑橘溃疡病的叶片。究其原因,可能是抗性诱导剂东莨菪内酯(SC)和瑞香素(DA)主要作用于植物免疫系统,诱导增强植物抗性,柑橘溃疡病发生时叶片免疫系统被破坏,抗性诱导剂无法发挥抗性诱导作用。有学者研究表明,抗性诱导剂的主要作用诱导激活植物抗性,延缓病害的发展,降低发病程度。杨枫[44]发现外源施用多胺处理有效延缓了冰糖橙叶片的发病时间,降低了病害程度。茉莉酸和水杨酸之间的拮抗作用在植物对病原菌侵染的免疫调控中起着关键作用,病原菌可能促进了宿主脱落酸的生物合成,促进茉莉酸积累,反过来抑制了水杨酸介导的植物防御,导致病害发生[45]。目前,在柑橘溃疡病的防治中少有利用抗性诱导剂进行防治的研究。本研究表明,抗性诱导剂东莨菪内酯(SC)和瑞香素(DA)可以有效降低柑橘溃疡病发生程度。后续将深入研究抗性诱导剂在防控柑橘溃疡病的应用及作用机制,以期找到安全高效的防治柑橘溃疡病的技术措施。

Figure (3)  Table (1) Reference (45)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return