[1]
|
TANKSLEY S D, BERNATZKY R, LAPITAN N L, et al. Conservation of Gene Repertoire but not Gene Order in Pepper and Tomato[J]. PROC NATL ACAD SCI USA, 1988, 85(17): 6419-6423. doi: 10.1073/pnas.85.17.6419
CrossRef Google Scholar
|
[2]
|
PRINCE J P, POCHARD E, TANKSLEY S D. Construction of a Molecular Linkage Map of Pepper and a Comparison of Synteny with Tomato[J]. Genome, 1993, 36(3): 404-417. doi: 10.1139/g93-056
CrossRef Google Scholar
|
[3]
|
LEFEBVRE V, PALLOIX A, CARANTA C, et al. Construction of an Intraspecific Integrated Linkage Map of Pepper Using Molecular Markers and Doubled-haploid Progenies[J]. Genome 1995, 38(1): 112-121. doi: 10.1139/g95-014
CrossRef Google Scholar
|
[4]
|
PARAN I, VANDERVOORT J R, LEFEBVRE V, et al. An Integrated Genetic Linkage Map of Pepper (Capsicum spp.)[J]. Mol. Breed. 2004, 13: 251-261. doi: 10.1023/B:MOLB.0000022526.30914.31
CrossRef Google Scholar
|
[5]
|
张宝玺, 王立浩, 黄三文, 等. 辣椒分子遗传图谱的构建和胞质雄性不育恢复性的QTL分析[J]. 中国农业科学, 2003, 36(7): 818-822. doi: 10.3321/j.issn:0578-1752.2003.07.015
CrossRef Google Scholar
|
[6]
|
WANG L H, ZHANG B X, LEFEBVRE V, et al. QTL Analysis of Fertility Restoration in cytoplasmic male sterile pepper[J]. Theor Appl Genet, 2004, 109(5): 1058-1063. doi: 10.1007/s00122-004-1715-8
CrossRef Google Scholar
|
[7]
|
张晓芬, 韩华丽, 陈斌, 等. 甜椒疫病抗性遗传及相关基因分子标记研究[J]. 园艺学报, 2011, 38(7): 1325-1332. doi: 10.16420/j.issn.0513-353x.2011.07.017
CrossRef Google Scholar
|
[8]
|
WANG G Y, CHEN B, DU H S, et al. Genetic Mapping of Anthocyanin Accumulation-related Genes in Pepper Fruits Using a Combination of SLAF-seq and BSA[J]. Plos One, 2018, 13(9): e0204690. doi: 10.1371/journal.pone.0204690
CrossRef Google Scholar
|
[9]
|
ZHU Z S, SUN B M, WEI J L, et al. Construction of a High Density Genetic Map of an Interspecific Cross of Capsicum chinense and Capsicum annuum and QTL Analysis of Floral Traits[J]. Sci Rep, 2019a, 9: 1054. doi: 10.1038/s41598-018-38370-0
CrossRef Google Scholar
|
[10]
|
LI W, CHENG J W, WU Z M, et al. An InDel-based Linkage Map of Hot Pepper (Capsicum annuum)[J]. Mol Breeding, 2015, 35(1): 32. doi: 10.1007/s11032-015-0219-3
CrossRef Google Scholar
|
[11]
|
TAN S, CHENG J W, ZHANG L, et al. Construction of an Interspecific Genetic Map Based on InDel and SSR for Mapping the QTLs Affecting the Initiation of Flower Primordial in Pepper (Capsicum spp.)[J]. Plos One, 2015, 10(3): e0119389. doi: 10.1371/journal.pone.0119389
CrossRef Google Scholar
|
[12]
|
LIU J Q, AI X Y, WANG Y H, et al. Fine Mapping of the Ca3GT Gene Controlling Anthocyanin Biosynthesis in Mature Unripe Fruit of Capsicum annuum L[J]. Theor Appl Genet, 2020, 133(9): 2729-2742. doi: 10.1007/s00122-020-03628-7
CrossRef Google Scholar
|
[13]
|
TAMISIER L, SZADKOWSKI M, NEMOUCHI G, et al. Genome-wide Association Mapping of QTLs Implied in Potato Virus Y Population Sizes in Pepper: Evidence for Widespread Resistance QTL Pyramiding[J]. Mol Plant Pathol, 2020, 21(1): 3-16. doi: 10.1111/mpp.12874
CrossRef Google Scholar
|
[14]
|
MURPHY J F, BLAUTH J R, LIVINGSTONE K D, et al. Genetic Mapping of the pvr1Locus in Capsicum spp. and Evidence that Distinct Potyvirus Resistance Loci Control Responses that Differ at the Whole Plant and Cellular Level[J]. Mol Plant Microbe In, 1998, 11(10): 943-951. doi: 10.1094/MPMI.1998.11.10.943
CrossRef Google Scholar
|
[15]
|
CARANTA C, LEFEBVRE V, PALLOIX A. Polygenic Resistance of Pepper to Potyviruses Consists of a Combination of Isolate-Specific and Broad-Spectrum Quantitative Trait Loci[J]. Mol Plant-Microbe Interactions, 1997, 10(7): 872-878. doi: 10.1094/MPMI.1997.10.7.872
CrossRef Google Scholar
|
[16]
|
CARANTA C, THABUIS A, PALLOIX A. Development of a CAPS Marker for the Pvr4 Locus: a Tool for Resistance to Pyramiding Potyvirus Resistance Genes in Pepper[J]. Genome, 1999, 42: 1111-1116. doi: 10.1139/g99-069
CrossRef Google Scholar
|
[17]
|
JAHN M, PARAN I, HOFFMANN K, et al. Genetic Mapping of the Tsw for Resistance to the Tospovirus Tomato Spotted Wilt Virus in Capsicum spp. and its Relationship to the Sw-5 Gene for Resistance to the Same Pathogen in Tomato[J]. Mol Plant-Microbe In, 2000, 13(6): 673-682. doi: 10.1094/MPMI.2000.13.6.673
CrossRef Google Scholar
|
[18]
|
MOURY B, PFLIEGER S, BLATTES A, et al. A CAPS Marker to Assist Selection of Tomato Spotted Wilt Virus (TSWV) Resistance in Pepper[J]. Genome, 2000, 43: 137-142. doi: 10.1139/g99-098
CrossRef Google Scholar
|
[19]
|
MATSUNAGA H, SAITO T, HIRAI M et al. DNA Markers Linked to Pepper Mild Mottle Virus (PMMoV) Resistant Locus (L-4) in Capsicum[J]. J Jpn Soc Hortic Sci, 2003, 72(3): 218-220. doi: 10.2503/jjshs.72.218
CrossRef Google Scholar
|
[20]
|
TAI T H, DAHLBECK D, CLARK ET, et al. Expression of the Bs2 Pepper Gene Confers Resistance to Bacterial Spot Disease in Tomato[J]. P Natl Acad Sci USA, 1999, 96(24): 14153-14158. doi: 10.1073/pnas.96.24.14153
CrossRef Google Scholar
|
[21]
|
PIERRE M, NOËL L, LAHAYE T, et al. High-resolution Genetic Mapping of the Pepper Resistance Locus Bs3 Governing Recognition of the Xanthomonas campestris pv vesicatora Avr Bs3 Protein[J]. Theor Appl Genet, 2000, 101: 255-263. doi: 10.1007/s001220051477
CrossRef Google Scholar
|
[22]
|
DJIAN-CAPORALINO C, PIJAROWSKI L, FAZARI A, et al. High-resolution Genetic Mapping of the Pepper (Capsicum annuum L.) Resistance Loci Me3 and Me4 Conferring Heat-stable Resistance to Root- knotnematodes (Meloidogyne spp.)[J]. Theor Appl Genet, 2001, 103: 592-600. doi: 10.1007/PL00002914
CrossRef Google Scholar
|
[23]
|
BLUM E, LIU K, MAZOUREK M, et al. Molecular Mapping of the C locus for Presence of Pungency in Capsicum[J]. Genome, 2002, 45(4): 702-705. doi: 10.1139/g02-031
CrossRef Google Scholar
|
[24]
|
MINAMIYAMA Y, KINOSHITA S, INABA K, et al. Development of a Cleaved Amplified Polymorphic Sequence (CAPS) Marker Linked to Pungency in Pepper[J]. Plant Breeding, 2005, 124(3): 288-291. doi: 10.1111/j.1439-0523.2005.01101.x
CrossRef Google Scholar
|
[25]
|
HURTADO-HERNANDEZ H, SMITH P. Inheritance of Mature Fruit Color in Capsicum annuum L[J]. J Hered, 1985, 76: 211-213. doi: 10.1093/oxfordjournals.jhered.a110070
CrossRef Google Scholar
|
[26]
|
LEFEBVRE V, KUNTZ M, CAMARA B, et al. The Capsanthin-capsorubin Synthase Gene: a Candidate Gene for the y Locus Controlling the Red Fruit Colour in Pepper[J]. Plant Mol Biol, 1998, 36(5): 785-789. doi: 10.1023/A:1005966313415
CrossRef Google Scholar
|
[27]
|
THORUP T A, TANYOLAC B, LIVINGSTONE K D, et al. Candidate Gene Analysis of Organ Pigmentation Loci in the Solanaceae[J]. P Natl Acad Sci USA, 2000, 97: 11192-11197. doi: 10.1073/pnas.97.21.11192
CrossRef Google Scholar
|
[28]
|
SMITH P G. Inheritance of Brown and Green Mature Fruit Color in Peppers[J]. Plant J, 1950, 41(5): 138-40.
Google Scholar
|
[29]
|
EFRATI A, EYAL Y, PARAN I. Molecular Mapping of the Chlorophyll Retainer (cl) Mutation in Pepper (Capsicum spp.) and Screening for Candidate Genes Using Tomato ESTs Homologous to Structural Genes of the Chlorophyll Catabolism Pathway[J]. Genome, 2005, 48(2): 347-351. doi: 10.1139/g04-119
CrossRef Google Scholar
|
[30]
|
BEN-CHAIM A, BOROVSKY Y, DEJONG W, et al. Linkage of the A Locus for the Presence of Anthoxyanin and fs10.1, a Major Fruit-shape QTL in Pepper[J]. Theor Appl Genet, 2003, 106: 889-894. doi: 10.1007/s00122-002-1132-9
CrossRef Google Scholar
|
[31]
|
BOROVSKY Y, OREN-SHAMIR M, OVADIA R, et al. The A Locus that Controls Anthocyanin Accumulation in Pepper Encodes a MYB Transcription Factor Homologous to Anthocyanin2 of Petunia[J]. Theor Appl Gent, 2004, 109(1): 23-29. doi: 10.1007/s00122-004-1625-9
CrossRef Google Scholar
|
[32]
|
RAO GU, PARAN I. Polygalacturonase: a Candidate Gene for the Soft Flesh and Deciduous Fruit Mutation in Capsicum[J]. Plant Mol Biol, 2003, 51(1): 135-141.
Google Scholar
|
[33]
|
ZHANG B X, HUANG S W, YANG G M, et al. Two RAPD Markers Llinked to a Major Fertility Restorer Gene in Pepper[J]. Euphytica, 2000, 113: 155-161. doi: 10.1023/A:1003945723196
CrossRef Google Scholar
|
[34]
|
THABUIS A, PALLOIX A, PFLIEGER S, et al. Comparative Mapping of Phytophthora Resistance Loci in Pepper Germplasm: Evidence for Conserved Resistance Loci across Solanaceae and for a Large Genetic Diversity[J]. Theor Appl Genet, 2003, 106(8): 1473-1485. doi: 10.1007/s00122-003-1206-3
CrossRef Google Scholar
|
[35]
|
李怡斐, 张世才, 蒋晓英, 等. 利用花药培养技术创制加工型辣椒抗疫病新种质[J]. 分子植物育种, 2019, 17(12): 4030-4035. doi: 10.13271/j.mpb.017.004030
CrossRef Google Scholar
|
[36]
|
王春萍, 杨小苗, 李怡斐, 等. 重庆加工型辣椒种质资源抗疫病鉴定的分子标记筛选[J]. 热带亚热带植物学报, 2021, 29(6): 642-648.
Google Scholar
|
[37]
|
王立浩, 张宝玺, Caranta C, 等. 利用分子标记对辣椒抗马铃薯Y病毒的3个QTLs进行选择[J]. 园艺学报, 2008, 35(1): 53-58. doi: 10.3321/j.issn:0513-353X.2008.01.009
CrossRef Google Scholar
|
[38]
|
郭广君, 朱雪梅, 潘宝贵, 等. 利用InDel分子标记辅助选育辣椒抗黄瓜花叶病毒病种质[J]. 江苏农业学报, 2021, 37(5): 1251-1261. doi: 10.3969/j.issn.1000-4440.2021.05.021
CrossRef Google Scholar
|
[39]
|
李怡斐, 蒋晓英, 张世才, 等. 加工型辣椒细胞质雄性不育育性基因分子标记及辅助育种[J]. 分子植物育种, 2016, 14(4): 946-952. doi: 10.13271/j.mpb.014.000946
CrossRef Google Scholar
|
[40]
|
TANAKA Y, YONEDA H, HOSOKAWA M, et al. Application of Marker-assisted Selection in Breeding of a New Fresh Pepper Cultivar (Capsicum annuum) Containing Capsinoids, Low-pungent Capsaicinoid Analogs[J]. Sci Hortic, 2014, 165: 242-245. doi: 10.1016/j.scienta.2013.10.025
CrossRef Google Scholar
|
[41]
|
KIM GW, HONG JP, LEE HY, et al. Genomic Selection with Fixed-effect Markers Improves the Prediction Accuracy for Capsaicinoid Contents in Capsicum annuum[J]. Hortic Res, 2022, 9: 204. doi: 10.1093/hr/uhac204
CrossRef Google Scholar
|
[42]
|
REN F S, YANG H F, JIAO Y S, et al. Fertility Conversion between Cytoplasmic Maintainer Lines and Restorer Lines Through Molecular Marker-assisted Selection in Pepper (Capsicum annuum L.)[J]. Biollgia, 2022, 77: 2351-2358. doi: 10.1007/s11756-022-01080-0
CrossRef Google Scholar
|
[43]
|
SCHWEIGGERT U, CARLE R, SCHIEBER A. Characterization of Major and Minor Capsaicinoids and Related Compounds in Chili Pods(Capsicum frutescens L.)by High-performance Liquid Chromatography/atmospheric Pressure Chemical Ionization Mass Spectrometry[J]. Anal Chim Acta, 2006, 557: 236-244. doi: 10.1016/j.aca.2005.10.032
CrossRef Google Scholar
|
[44]
|
BOSLAND P W, COON D, REEVES G. 'Trinidad Moruga Scorpion' Pepper Is the World's Hottest Measured Chile Pepper at More Than Two Million Scoville Heat Units[J]. Hort Technology, 2012, 22(4): 534-538.
Google Scholar
|
[45]
|
STEWART JC, KANG BC, LIU K, et al. The Pun1 Gene for Pungency in Pepper Encodes a Putative Acyltransferase[J]. Plant J, 2005, 42(5): 675-688. doi: 10.1111/j.1365-313X.2005.02410.x
CrossRef Google Scholar
|
[46]
|
MAZOUREK M, PUJAR A, BOROVSKY Y, et al. A Dynamic Interface for Capsaicinoid Systems Biology[J]. Plant Physiol, 2009, 150(4): 1806-1821. doi: 10.1104/pp.109.136549
CrossRef Google Scholar
|
[47]
|
张正海, 毛胜利, 王立浩, 等. 辣椒的辣味遗传控制与辣椒素生物合成研究进展[J]. 园艺学报, 2014, 41(9): 1821-1832. doi: 10.16420/j.issn.0513-353x.2014.09.014
CrossRef Google Scholar
|
[48]
|
KIM S, PARK M, YEOM S I, et al. Genome Sequence of the Hot Pepper Provides Insights into the Evolution of Pungency in Capsicum species[J]. Nat Genet, 2014, 46(3): 270-278. doi: 10.1038/ng.2877
CrossRef Google Scholar
|
[49]
|
QIN C, YU C S, SHEN Y O, et al. Whole-genome Sequencing of Cultivated and Wild Peppers Provides Insights into Capsicum Domestication and Specialization[J]. Proc Natl Acad Sci USA, 2014, 111(14): 5135-5140. doi: 10.1073/pnas.1400975111
CrossRef Google Scholar
|
[50]
|
NAVES E R, SILVA L DE Á, SULPICE R, et al. Capsaicinoids: Pungency beyond Capsicum[J]. Trends Plant Sci, 2019, 24(2): 109-120. doi: 10.1016/j.tplants.2018.11.001
CrossRef Google Scholar
|
[51]
|
雷建军, 朱张生, 孙彬妹, 等. 2018. 辣椒素类物质生物合成及其分子生物学机理研究进展[J]. 园艺学报, 2018, 45(9): 1739-1749. doi: 10.16420/j.issn.0513-353x.2018-0237
CrossRef Google Scholar
|
[52]
|
ARCE-RODRÍGUEZ M L, OCHOA-ALEJO N. An R2R3-MYB Transcription Factor Regulates Capsaicinoid Biosynthesis[J]. Plant Physiol, 2017, 17(3): 1359-1370.
Google Scholar
|
[53]
|
KOEDA S, NAKANO R, SAWAKI T. Multiple Non-pungent Capsicum chinense Accessions with a Loss of Function CaKR1 Allele Originating from South America[J]. Horticult J, 2020, 89(4): 460-465. doi: 10.2503/hortj.UTD-184
CrossRef Google Scholar
|
[54]
|
ZHU Z S, SUN B M, CAI W, et al. Natural Variations in the MYB Transcription Factor MYB31 Determine the Evolution of Extremely Pungent Peppers[J]. New Phytol, 2019b, 223(2): 922-938. doi: 10.1111/nph.15853
CrossRef Google Scholar
|
[55]
|
SUN B M, ZHOU X, CHEN C M, et al. Coexpression Network Analysis Reveals an MYB Transcriptional Activator Involved in Capsaicinoid Biosynthesis in Hot Peppers[J]. Hortic Res, 2020, 7(1): 41438-020-00381-2.
Google Scholar
|
[56]
|
SONG J L, CHEN C M, ZHANG S L, et al. Systematic Analysis of the Capsicum ERF Transcription Factor Family: Identification of Regulatory Factors Involved in the Regulation of Species-specific Metabolites[J]. BMC Genomics, 2020, 21(1): 573. doi: 10.1186/s12864-020-06983-3
CrossRef Google Scholar
|
[57]
|
SHAMS M, YUKSEL E A, AGAR G, et al. Biosynthesis of Capsaicinoids in Pungent Peppers under Salinity Stress[J]. Physiol Plantarum, 2023, 175(2): 13889. doi: 10.1111/ppl.13889
CrossRef Google Scholar
|
[58]
|
WEN J F, LV J H, ZHAO K, et al. Ethylene-Inducible AP2/ERF Transcription Factor Involved in the Capsaicinoid Biosynthesis in Capsicum[J]. Front Plant Sci, 2022, 13: 832669. doi: 10.3389/fpls.2022.832669
CrossRef Google Scholar
|
[59]
|
YU S, ZHANG W, ZHANG L P. MYB24 Negatively Regulates the Biosynthesis of Lignin and Capsaicin by Affecting the Expression of Key Genes in the Phenylpropanoid Metabolism Pathway in Capsicum chinense[J]. Molecules, 2023, 28(6): 28062644.
Google Scholar
|
[60]
|
LIU R J, SONG J L, LIU S Q, et al. Genome-wide Identification of the Capsicum bHLH Transcription Factor Family: Discovery of a Candidate Regulator Involved in the Regulation of Species-specific Bioactive Metabolites[J]. BMC Plant Biol, 2021, 21(1): 12870-021-03004-7.
Google Scholar
|
[61]
|
GUZMAN I, HAMBY S, ROMERO J, et al. Variability of Carotenoid Biosynthesis in Orange Colored Capsicum spp[J]. Plant Sci, 2010, 179(1/2): 49-59.
Google Scholar
|
[62]
|
LANG Y Q, YANAGAWA S, SASANUMA T, et al. Orange Fruit Color in Capsicum due to Deletion of Capsanthin-capsorubin Synthesis Gene[J]. Breeding Sci, 2004, 54: 33-39. doi: 10.1270/jsbbs.54.33
CrossRef Google Scholar
|
[63]
|
TIAN S L, LI Z, LI L, et al. Analysis of Tandem Repeat Units of the Promoter of Capsanthin / capsorubin Synthase (CCS) Gene in Pepper Fruit[J]. Physiol Mol Biol Pla, 2017, 23(3): 1-7.
Google Scholar
|
[64]
|
HA S H, KIM J B, PARK J S, et al. A Comparison of the Carotenoid Accumulation in Capsicum Varieties That Show Different Ripening Colours: Deletion of the Capsanthin-capsorubin Synthase Gene Is Not a Prerequisite for the Formation of a Yellow Pepper[J]. J Exp Bot, 2007, 58(12): 3135-3144. doi: 10.1093/jxb/erm132
CrossRef Google Scholar
|
[65]
|
KIM J E, YOO H J, KANG B C, et al. A New Nonsense Mutation in Capsanthin/capsorubin Synthase Controlling Orange Pepper Fruit[J]. Hortic Sci & Technol, 2017, 35(5): 599-607.
Google Scholar
|
[66]
|
KIM O R, CHO M C, KIM B D, et al. A Splicing Mutation in the Gene Encoding Phytoene Synthase Causes Orange Coloration in Habanero Pepper Fruits[J]. Mol Cells, 2010, 30: 569-574. doi: 10.1007/s10059-010-0154-4
CrossRef Google Scholar
|
[67]
|
BOROVSKY Y, TADMOR Y, BAR E, et al. Induced Mutation in β-CAROTENE HYDROXYLASE Results in Accumulation of β-carotene and Conversion of Red to Orange Color in Pepper fruits[J]. Theor Appl Genet, 2013, 126: 557-565. doi: 10.1007/s00122-012-2001-9
CrossRef Google Scholar
|
[68]
|
LEE SY, JANG SJ, JEONG HB, et al. A mutation in Zeaxanthin Epoxidase Contributes to Orange Coloration and Alters Carotenoid Contents in Pepper Fruit(Capsicum annuum)[J]. Plant J, 2021, 106(6): 1692-1707. doi: 10.1111/tpj.15264
CrossRef Google Scholar
|
[69]
|
SONG J L, SUN B M, CHEN C M, et al. An R-R-type MYB Transcription Factor Promotes Nonclimacteric Pepper Fruit Carotenoid Pigment Biosynthesis[J]. Plant J, 2023: 16257. doi: 10.1111/tpj.16257
CrossRef Google Scholar
|
[70]
|
MA J, DAI J X, LIU X W, et al. The Transcription Factor CaBBX20 Regulates Capsanthin Accumulation in Pepper (Capsicum annuum L.)[J]. Sci Hortic, 2023, 314: 111907. doi: 10.1016/j.scienta.2023.111907
CrossRef Google Scholar
|
[71]
|
HATTAN J I, FURUBAYASHI M, MAOKA T, et al. Reconstruction of the Native Biosynthetic System of Carotenoids in E. coli? Biosynthesis of a Series of Carotenoids Specific to Paprika Fruit[J]. ACS Synth Biol, 2023: 2c00578.
Google Scholar
|
[72]
|
雷建军, 朱张生, 陈长明, 等. 辣椒红色素及其生物合成的分子机理研究进展[J]. 园艺学报, 2023, 50(3): 669-684. doi: 10.16420/j.issn.0513-353x.2021-1187
CrossRef Google Scholar
|
[73]
|
CHENG Q, LI T, AI Y X, et al. Complementary Transcriptomic and Proteomic Analysis Reveals a Complex Network Regulating Pollen Abortion in GMS (msc-1) Pepper (Capsicum annuum L.)[J]. Int J Mol Sci, 2019, 20(7): 20071789.
Google Scholar
|
[74]
|
DONG J C, HU F, GUAN W D, et al. A 163-bp Insertion in the Capana10g000198 Encoding a MYB Transcription Factor Causes Male Sterility in Pepper (Capsicum annuum L.)[J]. Plant J, 2023, 113: 521-535. doi: 10.1111/tpj.16064
CrossRef Google Scholar
|
[75]
|
WEN J F, ZHAO K, LV J H, et al. Orf165 Is Associated with Cytoplasmic Male Sterility in Pepper[J]. Genet Mol Biol, 2021, 44(3): 0030.
Google Scholar
|
[76]
|
KIM D H, KANG J G, KIM B D. Isolation and Characterization of the Cytoplasmic Male Sterility-associated orf456 Gene of Chili Pepper (Capsicum annuum L.)[J]. Plant Mol Biol, 2007, 63: 519-532. doi: 10.1007/s11103-006-9106-y
CrossRef Google Scholar
|
[77]
|
GULYAS G, SHIN Y, KIM H, et al. Altered Transcript Reveals an Orf507 Sterility-Related Gene in Chili Pepper (Capsicum annuum L.)[J]. Plant Mol Biol Rep, 2010, 28: 605-612. doi: 10.1007/s11105-010-0182-4
CrossRef Google Scholar
|
[78]
|
KIM D H, KIM B D. The Organization of Mitochondrial atp6 Gene Region in Male Fertile and CMS Lines of Pepper(Capsicum annuum L.)[J]. Curr Genet, 2006, 49(1): 59-67. doi: 10.1007/s00294-005-0032-3
CrossRef Google Scholar
|
[79]
|
JO Y D, JEONG H J, KANG B C. Development of a CMS-specific Marker Based on Chloroplast-derived Mitochondrial Sequence in Pepper[J]. Plant Biotechnol Rep, 2009, 3: 309-315. doi: 10.1007/s11816-009-0103-x
CrossRef Google Scholar
|
[80]
|
GUO J J, WANG P, CHENG Q, et al. Proteomic Analysis Reveals Strong Mitochondrial Involvement in Cytoplasmic Male Sterility of Pepper (Capsicum annuum L.)[J]. J Proteomics, 2017, 168: 15-27. doi: 10.1016/j.jprot.2017.08.013
CrossRef Google Scholar
|
[81]
|
NIE Z X, SONG Y P, WANG H, et al. Fine Mapping and Gene Analysis of restorer-of -fertility Gene CaRfHZ in Pepper (Capsicum annuum L.)[J]. Int J Mol Sci, 2022, 23(14): 23147633.
Google Scholar
|
[82]
|
TOLOSA L N, ZHANG Z B. The Role of Major Transcription Factors in Solanaceous Food Crops Under Different Stress Conditions: Current and Future Perspectives[J]. Plants-Basel, 2020, 9(1): 56. doi: 10.3390/plants9010056
CrossRef Google Scholar
|
[83]
|
HUSSAINA A, NOMANC A, KHANA M I, et al. Molecular Regulation of Pepper Innate Immunity and Stress Tolerance: An Overview of WRKY TFs[J]. Microb Pathogenesis, 2019, 135: 103610. doi: 10.1016/j.micpath.2019.103610
CrossRef Google Scholar
|
[84]
|
DANG F F, LIN J H, XUE B P, et al. CaWRKY27 Negatively Regulates H2O2-mediated Thermotolerance in Pepper (Capsicum annuum)[J]. Front Plant Sci, 2018, 9: 1633. doi: 10.3389/fpls.2018.01633
CrossRef Google Scholar
|
[85]
|
MOU S L, LIU Z Q, GAO F, et al. CaHDZ27, a Homeodomain-leucine Zipper I Protein, Positively Regulates the Resistance to Ralstonia solanacearum Infection in Pepper[J]. Mol Plant Microbe In, 2017, 30(12): 960-973. doi: 10.1094/MPMI-06-17-0130-R
CrossRef Google Scholar
|
[86]
|
CHENG W, XIAO Z L, CAI H Y, et al. A Novel Leucine-rich Repeat Protein, CaLRR51, Acts as a Positive Regulator in the Response of Pepper to Ralstonia solanacearum Infection[J]. Mol Plant Pathol, 2017, 18(8): 1089-1100. doi: 10.1111/mpp.12462
CrossRef Google Scholar
|
[87]
|
HUANG J F, SHEN L, YANG S, et al. CaASR1 Promotes Salicylic Acid but Represses Jasmonic acid-dependent Signaling to Enhance the Resistance of Capsicum annuum to Bacterial Wilt by Modulating CabZIP63[J]. J Exp Bot, 2020, 71(20): 6538-6554. doi: 10.1093/jxb/eraa350
CrossRef Google Scholar
|
[88]
|
YANG S, SHI Y Y, ZOU L Y, et al. Pepper CaMLO6 Negatively Regulates Ralstonia solanacearum Resistance and Positively Regulates High Temperature and High Humidity Responses[J]. Plant Cell Physiol, 2020, 61(7): 1223-1238. doi: 10.1093/pcp/pcaa052
CrossRef Google Scholar
|
[89]
|
YANG S, ZHANG Y W, CAI W W, et al. CaWRKY28 Cys249 Is Required for Interaction with CaWRKY40 in the Regulation of Pepper Immunity to Ralstonia solanacearum[J]. Mol Plant Microbe In, 2021, 34(7): 733-745. doi: 10.1094/MPMI-12-20-0361-R
CrossRef Google Scholar
|
[90]
|
SHEN L, YANG S Y, FENG F, et al. CaCBL1 Acts as a Positive Regulator in Pepper Response to Ralstonia solanacearum[J]. MolL Plant Microbe In, 2020, 33(7): 945-957. doi: 10.1094/MPMI-08-19-0241-R
CrossRef Google Scholar
|
[91]
|
SHI L P, LI X, WENG Y H, et al. The CaPti1-CaERF3 Module Positively Regulates Resistance of Capsicum annuum to Bacterial Wilt Disease by Coupling Enhanced Immunity and Dehydration Tolerance[J]. Plant J, 2022, 111(1): 250-268. doi: 10.1111/tpj.15790
CrossRef Google Scholar
|
[92]
|
HUSSAIN A, KAISHENG L, NOMAN A, et al. N-Methyltransferase CaASHH3 Acts as a Positive Regulator of Immunity against Bacterial Pathogens in Pepper[J]. Int J Mol Sci, 2022, 23(12): 23126492.
Google Scholar
|
[93]
|
YANG S, CAI W W, SHEN L, et al. A CaCDPK29-CaWRKY27b Module Promotes CaWRKY40-mediated Thermotolerance and Immunity to Ralstonia solanacearum in Pepper[J]. New Phytol. 2022, 233(4): 1843-1863. doi: 10.1111/nph.17891
CrossRef Google Scholar
|
[94]
|
CHENG W, JIANG Y, PENG J T, et al. The Transcriptional Reprograming and Functional Identification of WRKY Family Members in Pepper's Response to Phytophthora capsici Infection[J]. BMC Plant Biol, 2020, 20: 256. doi: 10.1186/s12870-020-02464-7
CrossRef Google Scholar
|
[95]
|
KANG W H, KIM S, LEE H A, et al. Genome-wide Analysis of Dof Transcription Factors Reveals Functional Characteristics During Development and Response to Biotic Stresses in Pepper[J]. Sci. Rep, 2016, 6: 33332. doi: 10.1038/srep33332
CrossRef Google Scholar
|
[96]
|
ZHANG H X, ALI M, FENG X H, et al. A Novel Transcription Factor CaSBP12 Gene Negatively Regulates the Defense Response against Phytophthora capsici in Pepper (Capsicum annuum L.)[J]. Int J Mol Sci, 2019, 20(1): 48.
Google Scholar
|
[97]
|
ZHANG H X, FENG X H, ALI M, et al. Identification of Pepper CaSBP08 Gene in Defense Response against Phytophthora capsici Infection[J]. Front Plant Sci, 2020a, 11: 183. doi: 10.3389/fpls.2020.00183
CrossRef Google Scholar
|
[98]
|
ZHANG H X, FENG X H, JIN J H, et al. CaSBP11 Participates in the Defense Response of Pepper to Phytophthora capsici through Regulating the Expression of Defense-Related Genes[J]. Int J Mol Sci, 2020b, 21(23): 21239065.
Google Scholar
|
[99]
|
ALI M, MUHAMMAD I, HAQ SU, et al. The CaChiVI2 Gene of Capsicum annuum L. Confers Resistance against Heat Stress and Infection of Phytophthora capsici[J]. Front. Plant Sci., 2020, 11: 00219. doi: 10.3389/fpls.2020.00219
CrossRef Google Scholar
|
[100]
|
DU J S, HANG L F, HAO H Q, et al. The Dissection of R Genes and Locus Pc5.1 in Phytophthora capsici Infection Provides a Novel View of Disease Resistance in Peppers[J]. BMC Genomics, 2021: 372.
Google Scholar
|
[101]
|
NABOR-ROMERO O, ZAVALETA-MEJIA E, OCHOA-MARTINEZ DL, et al. Transcriptional Alterations Induced by Nacobbus aberrans in Interaction with Chili Pepper CM-334 and Phytophthora capsici[J]. Physiol Mol Plant P, 2022, DOI: 10.1016/j.pmpp.2022.101942.
CrossRef Google Scholar
|
[102]
|
BABA V Y, POWELL A F, IVAMOTO-SUZUKI S T, et al. Capsidiol-related Genes are Highly Expressed in Response to Colletotrichum scovillei during Capsicum annuum Fruit Development stages[J]. Sci Rep, 2020, 10(1): 12048. doi: 10.1038/s41598-020-68949-5
CrossRef Google Scholar
|
[103]
|
LEE S C, HWANG I S, CHOI H W, et al. Involvement of the Pepper Antimicrobial Protein CaAMP1 Gene in Broad Spectrum Disease Resistance[J]. Plant Physiol, 2008, 148(2): 1004-1020. doi: 10.1104/pp.108.123836
CrossRef Google Scholar
|
[104]
|
SON S, KIM S, LEE K S, et al, The Capsicum baccatum-Specific Truncated NLR Protein CbCN Enhances the Innate Immunity against Colletotrichum acutatum[J]. Int J Mol Sci, 2022, 22(14): 10. 3390.
Google Scholar
|
[105]
|
OH S K, LEE S, YU S H, et al. Expression of a Novel NAC Domain-containing Transcription Factor (CaNAC1) Is Preferentially Associated with Incompatible Interactions between Chili Pepper and Pathogens[J]. Planta, 2005, 222(5): 876-887. doi: 10.1007/s00425-005-0030-1
CrossRef Google Scholar
|
[106]
|
ZHAO L H, ZHANG L Z, HU Z H, et al. Tomato Zonate Spot Virus Induced Hypersensitive Resistance via an Auxin-related Pathway in Pepper[J]. Gene, 2022, 823: 146320. doi: 10.1016/j.gene.2022.146320
CrossRef Google Scholar
|
[107]
|
WANG J, ZENG X, TIAN D S, et al. The Pepper Bs4C Proteins Are Localized to the Endoplasmic Reticulum (ER) Membrane and Confer Disease Resistance to Bacterial Blight in Transgenic Rice[J]. Mol Plant Pathol, 2018, 19(8): 2025-2035. doi: 10.1111/mpp.12684
CrossRef Google Scholar
|
[108]
|
SENDIN, L N, ORCE I G, GOMEZ R L, et al. Inducible Expression of Bs2 R Gene from Capsicum chacoense in Sweet Orange (Citrus sinensis L. Osbeck) Confers Enhanced Resistance to Citrus Canker Disease[J]. Plant Mol Biol, 2017, 93(6): 607-621. doi: 10.1007/s11103-017-0586-8
CrossRef Google Scholar
|
[109]
|
LIAO H D, WEN X Y, DENG X L, et al. Integrated Proteomic and Metabolomic Analyses Reveal Significant Changes in Chloroplasts and Mitochondria of Pepper (Capsicum annuum L.) during Sclerotium rolfsii Infection[J]. J Microbiol, 2022, 60(5): 511-525. doi: 10.1007/s12275-022-1603-4
CrossRef Google Scholar
|
[110]
|
PARK C, LIM C W, LEE S C. The Pepper CaOSR1 Protein Regulates the Osmotic Stress Response via Abscisic Acid Signaling[J]. Front Plant Sci, 2016, 7: 890.
Google Scholar
|
[111]
|
PARK C, Lim W C, Baek W, et al. The Pepper WPP Domain Protein, CaWDP1, Acts as a Novel Negative Regulator of Drought Stress via ABA Signaling[J]. Plant Cell Physiol, 2017, 58(4): 779-788. doi: 10.1093/pcp/pcx017
CrossRef Google Scholar
|
[112]
|
LIM C W, PARK C, KIM J H, et al. Pepper CaREL1, a Ubiquitin E3 Ligase, Regulates Drought Tolerance via the ABA-signalling Pathway[J]. Sci Rep, 2017, DOI: 10.1038/s41598-017-00490-4.
CrossRef Google Scholar
|
[113]
|
LIM J, LIM C W, LEE S C. The Pepper Late Embryogenesis Abundant Protein, CaDIL1, Positively Regulates Drought Tolerance and ABA Signaling[J]. Front Plant Sci, 2018, 9: 1301. doi: 10.3389/fpls.2018.01301
CrossRef Google Scholar
|
[114]
|
LIM C W, HONG E, BAE Y, et al. The Pepper Dehydration-responsive Homeobox 1, CaDRHB1, Plays a Positive Role in the Dehydration Response[J]. Environ Exp Bot, 2018, 147(1): 104-115.
Google Scholar
|
[115]
|
LIM J, LIM C W, LEE S C. Pepper Novel Serine-Threonine Kinase CaDIK1 Regulates Drought Tolerance via Modulating ABA Sensitivity[J]. Front. Plant Sci, 2020, 11: 01133. doi: 10.3389/fpls.2020.01133
CrossRef Google Scholar
|
[116]
|
MA X, LI Y, GAI W X, et al. The CaCIPK3 Gene Positively Regulates Drought Tolerance in Pepper[J]. Hortic Res, 2021, 8(216): 41438-021-00651.
Google Scholar
|
[117]
|
MA X, YU Y N, LI Y, et al. The CBL-interacting Protein Kinase CaCIPK7 Enhances Drought Resistance in Pepper[J]. Sci Hortic, 2023, 310: 111726. doi: 10.1016/j.scienta.2022.111726
CrossRef Google Scholar
|
[118]
|
FENG X H, ZHANG H X, ALI M, et al. A Small Heat Shock Protein CaHsp25.9 Positively Regulates Heat, Salt, and Drought Stress Tolerance in Pepper (Capsicum annuum L.)[J]. Plant Physiol bioch, 2019, 142(1): 151-162.
Google Scholar
|
[119]
|
BAEK W, LIM C W, LEE S C. Pepper E3 Ligase CaAIRE1 Promotes ABA Sensitivity and Drought Tolerance by Degradation of Protein Phosphatase CaAITP1[J]. J Exp Bot, 2022, 72(12): 4520-4534.
Google Scholar
|
[120]
|
JEONG S, LIM CW, LEE SC. The Pepper MAP Kinase CaAIMK1 Positively Regulates ABA and Drought Stress Responses[J]. Front Plant Sci, 2020, 11: 720. doi: 10.3389/fpls.2020.00720
CrossRef Google Scholar
|
[121]
|
LIM C W, LIM J, BAEK W, et al. Pepper Clade A PP2C, CaSIP1, Negatively Modulates Drought Resistance by Suppressing CaSnRK2.6 Kinase Activity[J]. Environ Exp Bot, 2023, 209: 105275. doi: 10.1016/j.envexpbot.2023.105275
CrossRef Google Scholar
|
[122]
|
KIM M, JEONG S, LIM CW, et al. Mitogen-Activated Protein Kinase CaDIMK1 Functions as a Positive Regulator of Drought Stress Response and Abscisic Acid Signaling in Capsicum annuum[J]. Front Plant Sci, 2021, 12: 646707. doi: 10.3389/fpls.2021.646707
CrossRef Google Scholar
|
[123]
|
LIU Y L, LIU S, XIAO J J, et al. CaHSP18.1a, a Small Heat Shock Protein from Pepper (Capsicum annuum L.), Positively Responds to Heat, Drought, and Salt Tolerance[J]. Horticulturae, 2021, 7(5): 7050117.
Google Scholar
|
[124]
|
LIM C W, BAEK W, LIM J, et al. Pepper Ubiquitin-specific Protease, CaUBP12, Positively Modulates Dehydration Resistance by Enhancing CaSnRK2. 6 Stability[J]. Plant J, 2021 107(4): 1148-1165. doi: 10.1111/tpj.15374
CrossRef Google Scholar
|
[125]
|
USMAN M G, RAFⅡ M Y, MARTINI M Y, et al. Molecular Analysis of Hsp70 Mechanisms in Plants and Their Function in Response to Stress[J]. Biotechnol Genet Eng, 2017, 33(1): 26-39. doi: 10.1080/02648725.2017.1340546
CrossRef Google Scholar
|
[126]
|
USMAN M G, RAFⅡ M Y, MARTINI M Y, et al. Introgression of Heat Shock Protein (Hsp70 and sHsp) Genes into the Malaysian Elite Chilli Variety Kulai(Capsicum annuum L.) Through the Application of Marker Assisted Back Crossing (MAB)[J]. Cell Stress Chaperon, 2018, 23: 223-234. doi: 10.1007/s12192-017-0836-3
CrossRef Google Scholar
|
[127]
|
HUANG Y, CAI W W, LU Q L, et al. PMT6 Is Required for SWC4 in Positively Modulating Pepper Thermotolerance[J]. Int J Mol Sci, 2023, 24(5): 4849. doi: 10.3390/ijms24054849
CrossRef Google Scholar
|
[128]
|
CHENG G X, SUN J T, SHANG J P, et al. Virus-induced Gene Silencing for Phenylalanine Ammonia-lyase Affects Pepper Adaption to Low Temperature[J]. Biol Plantarum, 2019, 63: 601-609.
Google Scholar
|
[129]
|
ZHANG H F, LIU S Y, MA J H, et al. CaDHN4, a Salt and Cold Stress-responsive Dehydrin Gene from Pepper Decreases Abscisic Acid Sensitivity in Arabidopsis[J]. Int J Mol Sci, 2020, 21: 26.
Google Scholar
|
[130]
|
LI M F, JI L S, JIA Z F, et al. Constitutive Expression of CaHSP22. 5 Enhances Chilling Tolerance in Transgenic Tobacco by Promoting the Activity of Antioxidative Enzymes[J]. Funct Plant Biol, 2018, 45(5): 575-585.
Google Scholar
|
[131]
|
VENKATESH J, KANG M Y, LIU L, et al. F-Box Family Genes, LTSF1 and LTSF2, Regulate Low-temperature Stress Tolerance in Pepper(Capsicum chinense)[J]. Plants, 2020, 9: 1186. doi: 10.3390/plants9091186
CrossRef Google Scholar
|
[132]
|
MA X, GAI W X, LI Y, et al. The CBL-interacting Protein Kinase CaCIPK13 Positively Regulates Defence Mechanisms Against Cold Stress in Pepper[J]. J Exp Bot, 2022, 73(5): 1655-1667. doi: 10.1093/jxb/erab505
CrossRef Google Scholar
|
[133]
|
GOU B D, DUAN P, WEI M, et al. Silencing CaTPS1 Increases the Sensitivity to Low Temperature and Salt Stresses in Pepper[J]. Agronomy-Basel, 2023, 13(2): 319. doi: 10.3390/agronomy13020319
CrossRef Google Scholar
|
[134]
|
ZHANG J W, XIE M H, YU G F, et al. CaSPDS, a Spermidine Synthase Gene from Pepper (Capsicum annuum L.), Plays an Important Role in Response to Cold Stress[J]. Int J Mol Sci, 2023, 24(5): 24055013.
Google Scholar
|
[135]
|
LUO D, HOU X M, ZHANG Y M, et al. CaDHN5, a Dehydrin Gene from Pepper, Plays an Important Role in Salt and Osmotic Stress Responses[J]. Int J Mol Sci, 2019, 20(8): 1989. doi: 10.3390/ijms20081989
CrossRef Google Scholar
|
[136]
|
LIM C W, BAE Y, LEE S C. Differential role of Capsicum annuum FANTASTIC FOUR-like gene CaFAF1 on Drought and Salt Stress Responses[J]. Environ Exp Bot, 2022, 199(2): 104887.
Google Scholar
|
[137]
|
ZHOU L Y, LI M, DU Q J, et al. Genome-wide Identification of PLCPs in Pepper and the Functional Characterization of CaCP34 in Resistance to Salt- and Osmotic-induced Leaf Senescence[J]. Sci Hortic, 2023, 309(5): 111624.
Google Scholar
|
[138]
|
XIAO J J, ZHANG R X, KHAN A, et al. CaFtsH06, A Novel Filamentous Thermosensitive Protease Gene, Is Involved in Heat, Salt, and Drought Stress Tolerance of Pepper (Capsicum annuum L.)[J]. Int J Mol Sci, 2021, 22(13): 22136953.
Google Scholar
|
[139]
|
MENG Y C, ZHANG H F, PAN X X, et al. CaDHN3, a Pepper (Capsicum annuum L.) Dehydrin Gene Enhances the Tolerance against Salt and Drought Stresses by Reducing ROS Accumulation[J]. Int J Mol Sci, 2021, 22(6): 22063205.
Google Scholar
|
[140]
|
ZHANG Y P, CAI W W, WANG A W, et al. MADS-box Protein AGL8 Interacts with Chromatin-remodelling Component SWC4 to Activate Thermotolerance and Environment-dependent immunity in Pepper[J]. J Exp Bot, 2023, 73: 092.
Google Scholar
|
[141]
|
JOO H, LIM C W, LEE S C. Roles of Pepper bZIP Transcription Factor CaATBZ1 and Its Interacting Partner RING-type E3 ligase CaASRF1 in Modulation of ABA Signaling and Drought Tolerance[J]. Plant J, 2019, 100(2): 399-410. doi: 10.1111/tpj.14451
CrossRef Google Scholar
|
[142]
|
LIN J H, DANG F F, CHEN Y P, et al. CaWRKY27 negatively Regulates Salt and Osmotic Stress Responses in Pepper[J]. Plant Physiol bioch, 2019, 145(1): 43-51.
Google Scholar
|
[143]
|
GAI W X, MA X, LI Y, et al. CaHsfA1d Improves Plant Thermotolerance via Regulating the Expression of Stress- and Antioxidant-Related Genes[J]. Int J Mol Sci, 2020, 21(21): 21218374.
Google Scholar
|
[144]
|
LIM J, LIM C W, LEE S C. Role of Pepper MYB Transcription Factor CaDIM1 in Regulation of the Drought Response[J]. Front. Plant Sci, 2022, 13: 1028392. doi: 10.3389/fpls.2022.1028392
CrossRef Google Scholar
|
[145]
|
OH D, LIM C W, LEE S C. GRAS-type Transcription Factor CaGRAS1 Functions as a Positive Regulator of the Drought Response in Capsicum annuum[J]. Environ Exp Bot. 2022, 198: 104853. doi: 10.1016/j.envexpbot.2022.104853
CrossRef Google Scholar
|
[146]
|
BORRAS D, BARCHIBARCHI L, SCHULZ K, et al. Transcriptome-Based Identification and Functional Characterization of NAC Transcription Factors Responsive to Drought Stress in Capsicum annuum L[J]. Front Genet, 2021, 12: 743902. doi: 10.3389/fgene.2021.743902
CrossRef Google Scholar
|
[147]
|
MA J, WANG L Y, DAI J X, et al. The NAC-type Transcription Factor CaNAC46 Regulates the Salt and Drought Tolerance of Transgenic Arabidopsis thaliana[J]. BMC Plant Biol, 2021, 21: 11. doi: 10.1186/s12870-020-02764-y
CrossRef Google Scholar
|
[148]
|
GUO W L, WANG S B, CHEN R G, et al. Characterization and Expression Profile of CaNAC2 Pepper Gene[J]. Front Plant Sci, 2015, 6: 755.
Google Scholar
|
[149]
|
WANG H P, LIU Z C, XIE J M, et al. The CaALAD Gene From Pepper (Capsicum annuum L.) Confers Chilling Stress Tolerance in Transgenic Arabidopsis Plants[J]. Front Plant Sci, 2022, 13: 884990. doi: 10.3389/fpls.2022.884990
CrossRef Google Scholar
|
[150]
|
BANTI V, MAFESSONI F, LORETI E, et al. The Heat-inducible Transcription Factor HsfA2 Enhances Anoxia Tolerance in Arabidopsis[J]. Plant Physiol, 2010, 152(3): 1471-1483. doi: 10.1104/pp.109.149815
CrossRef Google Scholar
|
[151]
|
GUO M, YIN Y, JI J, et al. Cloning and Expression Analysis of Heat-shock Transcription Factor gene Cahsfa2 from Pepper (Capsicum annuum L.)[J]. Genet Mol Res, 2014, 13(1): 1865-1875.
Google Scholar
|
[152]
|
LIU W, PARROTT W A, HILDEBRAND D F, et al. Agrobacterium Induced Gall Formation in Bell Pepper (Capsicum annuum L.) and Formation of Shoot-like Structures Expressing Introduced Genes[J]. Plant Cell Rep, 1990, 9(7): 360-364.
Google Scholar
|
[153]
|
SHIN R, PARK J M, AN J M, et al. Ectopic Expression of Tsi1 in Transgenic Hot Pepper Plants Enhances Host Resistance to Viral, Bacterial, and Oomycete Pathogens[J]. Mol Plant Microbe In, 2002, 15(10): 983-969. doi: 10.1094/MPMI.2002.15.10.983
CrossRef Google Scholar
|
[154]
|
MURPHY J F, KYLE M M. Isolation and Viral Infection of Capsicum Leaf Protoplasts[J]. Plant Cell Rep, 1994, 13(7): 397-400.
Google Scholar
|
[155]
|
XU B L. Comparison of Resistance to CMV Particle and to CMV- RNA in Transgenic Chili Pepper Expressing CMV and TMV Coat proteins[J]. Acta Phytopatholgoica Sinica, 2002, 32(2): 132-137.
Google Scholar
|
[156]
|
周钟信, 粟密兰, 陈德芬, 等. 辣椒诱导再生及黄瓜花叶病毒外壳基因转化研究初报[J]. 华北农学报, 1991, 6(14): 69-72.
Google Scholar
|
[157]
|
YU X Z. Transgenic Sweet Pepper Plants from Agrobactorium Mediated Transformation[J]. Plant Cell Rep, 1996, 16: 71-7. doi: 10.1007/BF01275453
CrossRef Google Scholar
|
[158]
|
毕玉平, 单蕾, 王兴军, 等. 抗TMV+CMV辣椒转基因工程植株的再生及抗病毒鉴定[J]. 华北农学报, 1999, 14(3): 103-108. doi: 10.3321/j.issn:1000-7091.1999.03.021
CrossRef Google Scholar
|
[159]
|
李华平, 胡晋生, 王敏, 等. 黄瓜花叶病毒衣壳蛋白基因转化辣椒研究[J]. 病毒学报, 2000, 16(3): 276-278. doi: 10.3321/j.issn:1000-8721.2000.03.019
CrossRef Google Scholar
|
[160]
|
郭亚华, 徐香玲, 邓立平, 等. Ri质粒介导TMV和CMV外壳蛋白基因转化甜椒研究[J]. 北方园艺, 2000(4): 17-18. doi: 10.3969/j.issn.1001-0009.2000.04.018
CrossRef Google Scholar
|
[161]
|
商鸿生, 王旭, 徐秉良, 等. CP基因转化的线辣椒抗卡那霉素和抗CMV特性的遗传[J]. 西北农林科技大学学报(自然科学版), 2001, 29(5): 103-106.
Google Scholar
|
[162]
|
KIM S J, LEE S J, KIM B D, et al. Satellite- RNA- mediated Resistance to Cucumber Mosai Virus in Transgenic Plants of Hot Pepper[J]. Plant Cell Rep, 1997, 16(12): 825-830. doi: 10.1007/s002990050328
CrossRef Google Scholar
|
[163]
|
董春枝, 姜春哓, 冯兰香. 甜(辣)椒导入CMV卫星RNA互补DNA的植株再生[J]. 园艺学报, 1992, 19(2): 184-186.
Google Scholar
|
[164]
|
陈国菊, 石丽, 雷建军, 等. 中国商陆抗病毒蛋白基因的克隆及其转化辣椒[J]. 园艺学报, 2008, 35(6): 827-832. doi: 10.3321/j.issn:0513-353X.2008.06.008
CrossRef Google Scholar
|
[165]
|
高玉尧, 陈长明, 陈国菊, 等. Cry2Aa2和PamPAP双价表达载体的构建及其对辣椒的遗传转化. 园艺学报, 2012, 39(7): 1285-1292.
Google Scholar
|
[166]
|
KIM Y H. Improvement in Plant Disease Resistance and Anti-fungal Protein Gene[J]. Proceedings Vienna Aus-tria, 1995, 7: 145-155.
Google Scholar
|
[167]
|
ZHU Y X. Transgenic Sweet Pepper Plants form Agrobacterium-mediated Transformation[J]. Plant Cell Rep, 1996, 16: 71-75. doi: 10.1007/BF01275453
CrossRef Google Scholar
|
[168]
|
包良帅, 巩振辉, 柴贵贤, 等. 辣椒烟酰胺腺嘌呤二核苷酸磷酸基因(NADPH)在辣椒中的遗传转化及其抗病性鉴定[J]. 农业生物技术学报, 2011, 19(1): 45-50. doi: 10.3969/j.issn.1674-7968.2011.01.006
CrossRef Google Scholar
|
[169]
|
BAGGA S, LUCERO Y, APODACA K, et al. Chile (Capsicum annuum) Plants Transformed with the RB Gene from Solanum bulbocastanum Are Resistant to Phytophthora capsici[J]. Plos One, 2019, 14(10): e0223213. doi: 10.1371/journal.pone.0223213
CrossRef Google Scholar
|
[170]
|
MISHRA R, MOHANTY JN, MAHANTY B, et al. A Single Transcript CRISPR/Cas9 Mediated Mutagenesis of CaERF28 Confers Anthracnose Resistance in Chilli Pepper (Capsicum annuum L.)[J]. Planta, 2021, 254(5): 00425-021-03660-x.
Google Scholar
|
[171]
|
张银东, 唐跃东, 曾宪松, 等. 抗菌肽基因转化辣椒的研究[J]. 华南热带农业大学学报, 2000, 6(1): 1-4. doi: 10.3969/j.issn.1674-7054.2000.01.001
CrossRef Google Scholar
|
[172]
|
李乃坚, 余小林, 李颖, 等. 双价抗菌肽基因转化辣椒[J]. 热带作物学报, 2000, 21(4): 45-51. doi: 10.3969/j.issn.1000-2561.2000.04.008
CrossRef Google Scholar
|
[173]
|
李颖, 余小林, 李乃坚, 等. 转抗菌肽基因辣椒株系的青枯病抗性鉴定及系统选育[J]. 分子植物育种, 2005, 3(2): 217-221. doi: 10.3969/j.issn.1672-416X.2005.02.010
CrossRef Google Scholar
|
[174]
|
柳建军, 于洪欣, 周玉, 等. 辣椒的离体再生及抗虫基因转化的研究[J]. 山东师范大学学报(自然科学版), 2002, 17(4): 74-76. doi: 10.3969/j.issn.1001-4748.2002.04.021
CrossRef Google Scholar
|
[175]
|
王朋, 王关林, 方宏筠. 抗虫基因(CpTI)辣椒转化的初步研究[J]. 沈阳农业大学学报, 2002, 33(1): 30-32.
Google Scholar
|
[176]
|
袁静, 舒庆尧, 刘中来. 苏云金杆菌抗虫基因cryIAc转化辣椒的研究[J]. 武汉植物学研究, 2004, 22(3): 201-204. doi: 10.3969/j.issn.2095-0837.2004.03.004
CrossRef Google Scholar
|
[177]
|
ZHU Z S, XU X X, CAO B H, et al. Pyramiding of AtEDT1/HDG11 and Cry2Aa2 into Pepper (Capsicum annuum L.) Enhances Drought Tolerance and Insect Resistance without Yield Decrease[J]. Plant Cell Tiss Organ Cult, 2015, 120(3): 919-932. doi: 10.1007/s11240-014-0600-7
CrossRef Google Scholar
|
[178]
|
TSAFTARIS A. The Development of Herbicide- tolerant Transgenic Crops[J]. Field Crop Res, 1996, 45(1-3): 115-123. doi: 10.1016/0378-4290(95)00064-X
CrossRef Google Scholar
|
[179]
|
ORTEGA J L, RAJAPAKSE W, BAGGA S, et al. An Intragenic Approach to Confer Glyphosate Resistance in Chile (Capsicum annuum) by Introducing an In Vitro Mutagenized Chile EPSPS Gene Encoding for a Glyphosate Resistant EPSPS Protein[J]. Plos One, 2018, 13(4): 0194666.
Google Scholar
|
[180]
|
林栖凤, 邓用川, 吴多桂, 等. 耐盐辣椒基因工程[J]. 生物工程进展, 1999, 19(5): 19-24.
Google Scholar
|
[181]
|
SUBRAMANYAM K, SAILAJA K V, SUBRAMANYAM K, et al. Ectopic Expression of an Osmotin Gene Leads to Enhanced Salt Tolerance in Transgenic Chilli Pepper (Capsicum annum L.)[J]. Plant Cell Tiss Org Cult, 2011, 105: 181-192. doi: 10.1007/s11240-010-9850-1
CrossRef Google Scholar
|
[182]
|
BULLE M, YARRA R, ABBAGANI S. Enhanced Salinity Stress Tolerance in Transgenic Chilli Pepper (Capsicum annuum L.) Plants Overexpressing the Wheat Antiporter (TaNHX2) Gene[J]. Mol Breed, 2016, 36.
Google Scholar
|
[183]
|
SHIVAKUMARA T N, SREEVATHSA R, DASH P K, et al. Overexpression of Pea DNA Helicase 45 (PDH45) Imparts Tolerance to Multiple Abiotic Stresses in Chili (Capsicum annuum L.). Sci Rep 2017, 7(2): 760.
Google Scholar
|
[184]
|
王兴娥, 巩振辉, 李大伟, 等. 冷诱导基因C-重复基序结合因子4(CBF4)在辣椒中的遗传转化及抗寒性分析[J]. 农业生物技术学报, 2009, 17(5): 830-835. doi: 10.3969/j.issn.1674-7968.2009.05.016
CrossRef Google Scholar
|
[185]
|
LIU J X, YU Y X, LEI J J, et al. Study on Agrobacterium Mediated Transformation of Pepper with Barnase and Cre gene[J]. Agricultural Sciences in China, 2009, 8(8): 947-955. doi: 10.1016/S1671-2927(08)60299-0
CrossRef Google Scholar
|
[186]
|
FURUBAYASHI M, KUBO A, TAKEMURA M, et al. Capsanthin Production in Escherichia coli by Overexpression of Capsanthin/Capsorubin Synthase from Capsicum annuum[J]. J Agric Food Chem, 2021, 69(17): 5076. doi: 10.1021/acs.jafc.1c00083
CrossRef Google Scholar
|