Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2025 Volume 4 Issue 1
Article Contents

LIU Yu, CHEN Libo, HE Chengyou, et al. The Synergistic Effect and Field Efficacy of d-limonene and Thiomazine Complex on the Control of Whiteflies[J]. PLANT HEALTH AND MEDICINE, 2025, 4(1): 57-63. doi: 10.13718/j.cnki.zwyx.2025.01.008
Citation: LIU Yu, CHEN Libo, HE Chengyou, et al. The Synergistic Effect and Field Efficacy of d-limonene and Thiomazine Complex on the Control of Whiteflies[J]. PLANT HEALTH AND MEDICINE, 2025, 4(1): 57-63. doi: 10.13718/j.cnki.zwyx.2025.01.008

The Synergistic Effect and Field Efficacy of d-limonene and Thiomazine Complex on the Control of Whiteflies

More Information
  • Corresponding author: MAO Min
  • Received Date: 24/03/2024
    Available Online: 25/02/2025
  • MSC: S433

  • The whitefly is a globally significant agricultural pest that transmits viruses by piercing and sucking the sap of crops, severely threatening crop growth. Given the whitefly's resistance to various pesticides, a field efficacy trial was conducted to compare the control effects of 5% d-limonene emulsifiable concentrate, 70% thiamethoxam suspension concentrate, and 80% acetamiprid water dispersible granules, both individually and in combination. The results showed that the combination of 5% d-limonene and 70% thiamethoxam had a corrected control efficacy of 71.09% at 7 days post-treatment, which was comparable to the 72.71% efficacy of 70% thiamethoxam alone. It is recommended to use the combination of 5% d-limonene and 70% thiamethoxam in field applications to control whitefly, in order to reduce pesticide usage, and delay the development of pesticide resistance. The study provides technical support for the green control of whiteflies and offers a theoretical basis for the promotion and application of plant-derived pesticides.

  • 加载中
  • [1] 包华理. 广东省发现蔬菜新害虫——烟粉虱[J]. 广东农业科学, 1999, 26(6): 23.

    Google Scholar

    [2] 倪晓璐. Bt毒蛋白对烟粉虱共生菌和致病真菌的影响[D]. 南京: 南京农业大学, 2020.

    Google Scholar

    [3] 陈连根. 烟粉虱在园林植物上为害及其形态变异[J]. 上海农学院学报, 1997, 15(3): 186-189, 208.

    Google Scholar

    [4] 柳洋. 中国烟粉虱生物型分布、带毒率及抗药性监测[D]. 北京: 中国农业科学院, 2015.

    Google Scholar

    [5] MOUND L A, HALSEY S H, HISTORY B M N. Whitefly of The World: A Systematic Catalogue of the Aleyrodidae (Homoptera) with Host Plant and Natural Enemy Data[M]. London: British Museum (Natural History) and Wiley, 1978.

    Google Scholar

    [6] PERRING T M, COOPER A D, RODRIGUEZ R J, et al. Identification of a Whitefly Species by Genomic and Behavioral Studies[J]. Science, 1993, 259(5091): 74-77. doi: 10.1126/science.8418497

    CrossRef Google Scholar

    [7] 韩俊艳, 张立竹, 纪明山. 植物源杀虫剂的研究进展[J]. 中国农学通报, 2011, 27(21): 229-233.

    Google Scholar

    [8] 丁伟. 可持续的植物保护与农药的发展[J]. 植物医生, 1998, 11(2): 2-4.

    Google Scholar

    [9] 周红. 东莨菪内酯对朱砂叶螨致毒作用的钙通道相关基因研究[D]. 重庆: 西南大学, 2018.

    Google Scholar

    [10] 梁佳丽, 曾智, 龚恒亮, 等. 鱼藤酮的杀虫机理及其在白蚁防治上的应用前景[J]. 农业灾害研究, 2015, 5(9): 13-14, 37.

    Google Scholar

    [11] 王运儒, 曾鑫年, 王华堂, 等. 鱼藤酮与印楝素对小菜蛾幼虫的协同增效作用[J]. 中国农学通报, 2012, 28(36): 251-254.

    Google Scholar

    [12] 毛晓红, 陈鹏, 曹长代, 等. 鱼藤酮与3种新烟碱类杀虫剂桶混对烟粉虱和烟蚜的联合毒力[J]. 中国农学通报, 2021, 37(30): 98-105.

    Google Scholar

    [13] 张庭英, 徐汉虹, 王长宏. 鱼藤酮的应用现状及存在问题[J]. 农药, 2005, 44(8): 352-355.

    Google Scholar

    [14] BABAEENEZHAD E, HADIPOUR MORADI F, RAHIMI MONFARED S, et al. D-Limonene Alleviates Acute Kidney Injury Following Gentamicin Administration in Rats: Role of NF- κ B Pathway, Mitochondrial Apoptosis, Oxidative Stress, and PCNA[J]. Oxidative Medicine and Cellular Longevity, 2021, 2021(1): 6670007. doi: 10.1155/2021/6670007

    CrossRef Google Scholar

    [15] D'ALESSIO P A, BISSON J F, BÉNÉ M C. Anti-Stress Effects of D-Limonene and Its Metabolite Perillyl Alcohol[J]. Rejuvenation Research, 2014, 17(2): 145-149. doi: 10.1089/rej.2013.1515

    CrossRef Google Scholar

    [16] DURÇO A O, DE SOUZA D S, HEIMFARTH L, et al. D-Limonene Ameliorates Myocardial Infarction Injury by Reducing Reactive Oxygen Species and Cell Apoptosis in a Murine Model[J]. Journal of Natural Products, 2019, 82(11): 3010-3019. doi: 10.1021/acs.jnatprod.9b00523

    CrossRef Google Scholar

    [17] WANG X F, LI G, SHEN W. Protective Effects of D-Limonene Against Transient Cerebral Ischemia in Stroke-Prone Spontaneously Hypertensive Rats[J]. Experimental and Therapeutic Medicine, 2018, 15(1): 699-706.

    Google Scholar

    [18] AHMAD S B, REHMAN M U, FATIMA B, et al. Antifibrotic Effects of D-Limonene (5(1-Methyl-4-[1-Methylethenyl]) Cyclohexane) in CCl4 Induced Liver Toxicity in Wistar Rats[J]. Environmental Toxicology, 2018, 33(3): 361-369. doi: 10.1002/tox.22523

    CrossRef Google Scholar

    [19] CHAUDHARY S C, SIDDIQUI M S, ATHAR M, et al. D-Limonene Modulates Inflammation, Oxidative Stress and Ras-ERK Pathway to Inhibit Murine Skin Tumorigenesis[J]. Human & Experimental Toxicology, 2012, 31(8): 798-811.

    Google Scholar

    [20] ZHAO C, ZHANG Z, NIE D C, et al. Protective Effect of Lemon Essential Oil and Its Major Active Component, D-Limonene, on Intestinal Injury and Inflammation of E. Coli-Challenged Mice[J]. Frontiers in Nutrition, 2022, 9: 843096. doi: 10.3389/fnut.2022.843096

    CrossRef Google Scholar

    [21] JING L, ZHANG Y, FAN S G J, et al. Preventive and Ameliorating Effects of Citrus D-Limonene on Dyslipidemia and Hyperglycemia in Mice with High-Fat Diet-Induced Obesity[J]. European Journal of Pharmacology, 2013, 715(1-3): 46-55. doi: 10.1016/j.ejphar.2013.06.022

    CrossRef Google Scholar

    [22] LEITE-ANDRADE M C, DE ARA U ' JO NETO L N, BUONAFINA-PAZ M D S, et al. Antifungal Effect and Inhibition of the Virulence Mechanism of D-Limonene Against Candida parapsilosis[J]. Molecules, 2022, 27(24): 8884. doi: 10.3390/molecules27248884

    CrossRef Google Scholar

    [23] RAVICHANDRAN C, BADGUJAR P C, GUNDEV P, et al. Review of Toxicological Assessment of D-Limonene, a Food and Cosmetics Additive[J]. Food and Chemical Toxicology, 2018, 120: 668-680. doi: 10.1016/j.fct.2018.07.052

    CrossRef Google Scholar

    [24] IBRAHIUM S M, ABDEL-BAKI A S, AL-QURAISHY S, et al. Efficacy of D-Limonene Nanoemulsion Against Rhipicephalus Annulatus and Rhipicephalus Sanguineus Ticks[J]. Acta Parasitologica, 2024, 69(1): 267-274. doi: 10.1007/s11686-023-00734-6

    CrossRef Google Scholar

    [25] GADELHAQ S M, ABOELHADID S M, ABDEL-BAKI A A S, et al. D-Limonene Nanoemulsion: Lousicidal Activity, Stability, and Effect on the Cuticle of Columbicola columbae[J]. Medical and Veterinary Entomology, 2023, 37(1): 63-75. doi: 10.1111/mve.12607

    CrossRef Google Scholar

    [26] TRIPATHI A K, PRAJAPATI V, KHANUJA S P S, et al. Effect of D-Limonene on Three Stored-Product Beetles[J]. Journal of Economic Entomology, 2003, 96(3): 990-995. doi: 10.1603/0022-0493-96.3.990

    CrossRef Google Scholar

    [27] 姚晶. 烟粉虱对多杀菌素和阿维菌素的抗性监测及生化机理研究[D]. 武汉: 华中农业大学, 2013.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)  /  Tables(3)

Article Metrics

Article views(230) PDF downloads(127) Cited by(0)

Access History

Other Articles By Authors

The Synergistic Effect and Field Efficacy of d-limonene and Thiomazine Complex on the Control of Whiteflies

    Corresponding author: MAO Min

Abstract: 

The whitefly is a globally significant agricultural pest that transmits viruses by piercing and sucking the sap of crops, severely threatening crop growth. Given the whitefly's resistance to various pesticides, a field efficacy trial was conducted to compare the control effects of 5% d-limonene emulsifiable concentrate, 70% thiamethoxam suspension concentrate, and 80% acetamiprid water dispersible granules, both individually and in combination. The results showed that the combination of 5% d-limonene and 70% thiamethoxam had a corrected control efficacy of 71.09% at 7 days post-treatment, which was comparable to the 72.71% efficacy of 70% thiamethoxam alone. It is recommended to use the combination of 5% d-limonene and 70% thiamethoxam in field applications to control whitefly, in order to reduce pesticide usage, and delay the development of pesticide resistance. The study provides technical support for the green control of whiteflies and offers a theoretical basis for the promotion and application of plant-derived pesticides.

  • 开放科学(资源服务)标识码(OSID):

  • 烟粉虱(Bemisia tabaci)是重要的农业害虫,广泛危害世界大部分生态区的蔬菜和观赏作物[1]。烟粉虱以吸食作物韧皮部组织中的光合产物为生,并在刺吸过程中传播超过300种病毒[2-3]。刺吸作物后,烟粉虱可引发黑霉病症状,显著抑制作物的光合作用。在中国,烟粉虱自南向北扩散,至1995年已扩展至12个省份[4]。在烟草生产中,烟粉虱不仅通过吸食叶片汁液导致叶片褪绿、萎缩及变形(图 1),抑制光合作用,还携带并传播烟草花叶病毒(Tobacco Mosaic Virus,TMV),引发烟叶发育不良,从而影响烟草产量和品质,导致农民收益下降。

    由于烟粉虱的快速入侵及其严重的经济危害,生产中通常采用快速高效的化学药剂进行防治。在农业生产中,防治烟粉虱的常用农药包括氨基甲酸酯类、拟除虫菊酯类、有机磷类和微生物制剂等。然而,农药选择需综合考虑生产实际情况,如烟粉虱种类、抗药性、作物类型、环境影响及安全性等因素。相关报道提示,烟粉虱最早对“乐果”和“久效磷”产生高水平抗药性,并对有机磷类药剂表现出中等抗性[5]。随后,烟粉虱的抗药性问题引起广泛关注,研究发现其在20多个国家对30多种杀虫剂(如有机磷、有机氯、拟除虫菊酯和氨基甲酸酯)产生抗性[6]。随着对环境保护和益虫保护需求的增加,越来越多的专家呼吁寻找更安全、有效的农药施用方式,以替代传统的化学防治方法。

    植物性农药是从植物中提取并经过加工合成,具有杀虫或抗菌活性的新型农药[7]。随着人们认识到化学农药对非靶标生物及生态环境的危害,植物源农药的发展变得愈加迫切[8]。自从发现除虫菊酯等天然植物源农药后,相关研究领域逐渐扩展。我国植物源农药产业迅速发展,已形成系统的科学理论与研究方法、成熟的产品开发体系及稳定的研发团队与机构。自然界来源广泛的东莨菪内酯对朱砂叶螨具有显著的杀螨效果,通过作用于钙离子通道影响害螨的正常生理活动[9]。鱼藤酮作为植物源农药的代表,已被多项研究证明对烟粉虱、烟蚜、白蚁和小菜蛾等具有较好的防效[10-12]。尽管鱼藤酮对这些害虫具有较高的毒性,但其对人类及其他哺乳动物的毒性相对较低。然而,鱼藤酮对环境中的非靶标生物,特别是水生生物,可能产生负面影响[13]

    d-柠檬烯又名苎烯或1-甲基-4-(1-甲基乙烯基)环己烯(图 2),是一种存在于柠檬和柑橘类水果中的单萜类化合物,具有独特香气和多种生物活性。d-柠檬烯广泛应用于医药、食品、化妆品和农业等领域。研究表明,d-柠檬烯在医学领域具有抗氧化、抗糖尿病、抗癌、抗炎、心脏保护、胃保护、保肝、免疫调节、抗纤维化及抗基因毒性等作用[14-21],同时还具备抗菌和抗真菌活性[22],并被用于抗感染药物的开发。在食品和饮料工业中,d-柠檬烯常用作香精和调味剂,并具有防腐作用[23]。在植物保护领域,d-柠檬烯具有抗真菌和抗细菌特性,可有效控制部分农作物病害。将柠檬烯作为植物保护剂,可用于防治作物上的真菌和细菌病害。此外,d-柠檬烯作为生长调节剂,能够促进植物的生长和发育。d-柠檬烯对昆虫具有趋避和防治作用,已有研究证明其对环状扇头虫、血扇扇头虫[24]及鸽羽虱成虫[25]具有显著的杀虫效果。目前,d-柠檬烯已被开发为性状稳定的乳液和微乳液,用于农业生产。d-柠檬烯作为天然化合物,通常从柑橘类植物的果皮中提取。在农业领域,d-柠檬烯作为植物源农药具有广阔的应用前景。作为生物农药,d-柠檬烯具有抗菌、驱虫和杀菌作用,能有效控制农作物上的害虫和病害[26],并具有环境友好性,且能在一定时间内分解。

    本研究针对烟粉虱抗药性强、繁殖迅速的特点,以5%d-柠檬烯乳油为主要植物源农药,配合70%噻虫嗪悬浮剂和80%烯啶吡蚜酮水分散剂,在虫口高峰期进行田间小区试验,并与单独施药组进行效果对比,以为绿色施药策略提供理论依据。

1.   材料与方法
  • 本试验于2023年6月20日至2023年7月10日在四川省攀枝花市盐边县红格镇烟草基地进行,试验地点海拔1 965.5 m,坐标为102°0′36″E,26°30′0″N,为连续3年发生烟粉虱的地块。使用的烟草品种为“云烟87”,烟株处于团棵期,烟粉虱的平均单株虫口数为18头。

  • 5%d-柠檬烯乳油由奥罗阿格瑞国际有限公司生产;70%噻虫嗪悬浮剂由湖北优世康生物科技有限公司生产;80%烯啶吡蚜酮水分散剂由山东利邦农化有限公司生产。

  • 本试验采用随机区组设计,共设置6个处理,3次重复,共18个小区,每个小区面积约66.67 m2,设置保护行,总试验地面积约1 333.33 m2。试验地地势平坦且为烟粉虱常年发生区,发病率高于40%。施用药剂及处理方法见表 1

  • 在施药前1 d调查各处理的烟粉虱虫口基数,药后1 d调查秧苗药害情况,并在药后3 d,5 d,7 d,10 d和15 d分别调查烟粉虱活虫数。采用五点取样法,每点选择1株,统计整株烟粉虱成虫数量,计算虫口减退率及校正防效。

  • 应用SPSS 19.00数据分析软件进行数据处理,通过邓肯氏多重比较法检验各处理差异显著性,显著性检验水平为p < 0.05。

2.   结果与分析
  • 2023年6月至2023年7月4次田间调查发现,烟草长势良好,未出现黄化、萎蔫等药害胁迫现象,证明各个处理的药剂用量适宜,药剂安全性可靠。

  • 由试验结果可知,不同处理药后3 d和药后5 d对烟粉虱的校正防效存在明显差异。药后3 d,处理1与处理2具有较强的速效性,对烟粉虱的校正防效高达64.67%和67.18%,明显高于处理3的56.66%、处理4的62.32%和处理5的60.11%,差异均具有统计学意义。药后5 d,处理1与处理2的校正分别为70.24%和71.17%,明显高于处理3的59.80%、处理4的67.67%和处理5的64.68%,差异均具有统计学意义(表 2)。

  • 由试验结果可知,不同处理药后7 d和药后14 d对烟粉虱的校正防效存在明显差异。药后7 d,复配药剂组合处理4的校正防效71.09%明显高于处理5的69.49%,低于单药剂处理1的74.21%与处理2的72.71%,差异均具有统计学意义。药后14 d,经复配药剂处理的处理5的校正防效高达36.26%,明显高于处理4的33.97%,同时高于经单剂药剂处理的处理1、处理2和处理3的校正防效,差异均具有统计学意义(表 3)。

3.   结论与讨论
  • 根据田间小区试验结果,单独施用的5%d-柠檬烯乳油与70%噻虫嗪悬浮剂表现出较强的速效性,药后3 d的防效分别为64.67%和67.18%,明显高于80%烯啶吡蚜酮水分散剂的56.66%。因此,建议在烟粉虱虫口数量较少时,使用5%d-柠檬烯乳油与70%噻虫嗪悬浮剂进行虫口控制。复配药剂处理组中,5%d-柠檬烯乳油+70%噻虫嗪悬浮剂与5%d-柠檬烯乳油+80%烯啶吡蚜酮水分散剂在药后7 d的校正防效分别为71.09%和69.49%。从经济性及农药残留角度考虑,推荐采用复配药剂组合,以减少烟粉虱的抗药性发展,并确保最佳防效。

    烟粉虱因其强传毒性和抗药性,成为全球性的重要害虫,对农业生产造成重大危害。不合理使用农药易导致其抗药性问题加剧[27]。鉴于烟粉虱对多种农药的抗性,亟需加强综合防治和杀虫剂抗性管理,并优化农药施用技术,最大限度减少农药使用,延缓抗药性的发生,从而保证长期的防控效果。研究和使用环境友好的植物源农药与现有商品药复配是未来发展的趋势和必然[8]。本研究以5%d-柠檬烯为主要植物源农药,配合常见的70%噻虫嗪和80%烯啶吡蚜酮,在田间开展小区试验,比较单独施药与复配药剂的防效,结果显示复配药剂具有较好的杀虫效果和较长的持效期,有助于减少商品药的使用,并有效应对抗药性问题,研究结果为植物源农药在田间应用提供了重要的理论依据。

Figure (2)  Table (3) Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return