Banach空间中非凸广义方程的度量次正则性
Metric Subregularity of Nonconvex Generalized Equations in Banach Spaces
-
摘要: 利用Ekeland变分原理、Clarke上导数和Clarke次微分,在一般的Banach空间中给出非凸广义方程的度量次正则性成立的充分条件,所得结果改进了相关文献中的结果。
-
关键词:
- Ekeland变分原理 /
- Clarke上导数 /
- Clarke次微分 /
- 度量次正则性
Abstract: Using the Ekeland variational principle ,the Clarke coderivative and the Clarke subdifferential , we give the sufficient conditions for the metric subregularity of nonconvex generalized equations in general Banach spaces .The results presented in this paper improve some corresponding results in the literature . -
-
计量
- 文章访问数: 888
- HTML全文浏览数: 560
- PDF下载数: 95
- 施引文献: 0