-
二次剩余码(简称QR码)是文献[1]提出的一类循环BCH码.由于这类码的码率都大于或等于1/2,所以大部分QR码都是比较好的纠错码.例如(24,12,8) QR码已被用于航海通信[2].
在过去的几十年里,关于QR码的译码方法已经提出很多种[3-9],但这些译码方法很多都采用了一些代数工具,需要比较复杂的有限域中的计算,从而延长了译码时间.为减少译码复杂性,查表译码就成为一个比较好的选择.查表译码需要预先存储由校验子和相应的错误模式构成的表.对于纠错能力为4的(41,21,9) QR码,它需要存储
$\sum _{i = 1}^4\left( \begin{array}{l} 41\\ i \end{array} \right) = 112\,791$ 个校验子和相应的错误模式,存储大小为112 791×(6bytes+3bytes)≈991.3 Kbytes.文献[4]经过改善,提出的算法需要存储101.26 Kbytes.事实上,考虑循环码的特性,只需存储$\sum _{i = 1}^4\left( \begin{array}{l} 41\\ i \end{array} \right)/41 = 2751$ 个校验子和相应的错误模式即可,此时存储大小仅为24.18 Kbytes[2].而文献[5]和文献[6]又进一步优化,分别将存储大小减少到2.47 Kbytes和2.03 Kbytes,大大节省了存储空间.本文继续沿用查表译码的思想,同时又利用校验子与校验矩阵之间的关系,提出了一种基于校验子重量的快速译码算法(fast syndrome-weight decoding algorithm,FSWDA).这个算法具有运算简单、存储量小的特点,而且可以用于其它纠错能力小于或等于4的QR码.
On Fast Decoding of (41, 21, 9) Quadratic Residue Code
-
摘要: 针对(41,21,9) 二次剩余码,提出了一种快速的基于校验子重量的译码算法(FSWDA).这种译码算法结合了循环码的性质,又巧用了校验子的汉明重量,其最大优点是不需要存储校验子和相应的错误模式构成的表,却能达到查表译码的效果.另外,本算法还可以用于其它纠错能力为4的二次剩余码.Abstract: The binary QR codes are a family of linear cyclic BCH codes. In this paper, a fast syndrome-weight decoding algorithm (FSWDA) has been presented to decode up to four possible errors in a binary systematic (41, 21, 9) quadratic residue (QR) code. The main idea of FSWDA is based on the property of cyclic codes together with the weight of syndrome difference. The advantage of the FSWDA decoding algorithm over the previous table look-up methods is that it has no need of a look-up table to store the syndromes and their corresponding error patterns in the memory. Moreover, it can be extended to decode all four-error-correcting binary QR codes.
-
Key words:
- quadratic residue code /
- table look-up decoding /
- error pattern /
- syndrome /
- hamming weight .
-
表 1 (41,21,9) QR码的错误情况及相应的错误模式数量
步骤 错误情况 错误模式数量 错误情况 错误模式数量 1 P $\left( \begin{array}{l} 20\\ 1 \end{array} \right)$ =20PP $\left( \begin{array}{1} 20\\ 2 \end{array} \right)$ =190PPP $\left( \begin{array}{1} 20\\ 3 \end{array} \right)$ =1140PPPP $\left( \begin{array}{1} 20\\ 4 \end{array} \right)$ =48452 M $\left( \begin{array}{1} 20\\ 1 \end{array} \right)$ =20MM $\left( \begin{array}{1} 20\\ 2 \end{array} \right)$ =190MMM $\left( \begin{array}{1} 20\\ 3 \end{array} \right)$ =1140MMMM $\left( \begin{array}{1} 20\\ 4 \end{array} \right)$ =48453 F 1 FP $\left( \begin{array}{1} 20\\ 1 \end{array} \right)$ =20MP $\left( \begin{array}{l} 20\\ 1 \end{array} \right)\left( \begin{array}{l} 20\\ 1 \end{array} \right)$ =400FPP $\left( \begin{array}{1} 20\\ 2 \end{array} \right)$ =190MPPP $\left( \begin{array}{l} 20\\ 1 \end{array} \right)\left( \begin{array}{l} 20\\ 2 \end{array} \right)$ =3800FPPP $\left( \begin{array}{1} 20\\ 3 \end{array} \right)$ =1140MPPP $\left( \begin{array}{l} 20\\ 1 \end{array} \right)\left( \begin{array}{l} 20\\ 3 \end{array} \right)$ =228004 FM $\left( \begin{array}{1} 20\\ 1 \end{array} \right)$ =20FMM $\left( \begin{array}{1} 20\\ 2 \end{array} \right)$ =190MMP $\left( \begin{array}{l} 20\\ 2 \end{array} \right)\left( \begin{array}{l} 20\\ 1 \end{array} \right)$ =3800FMMM $\left( \begin{array}{1} 20\\ 3 \end{array} \right)$ =1140MMMP $\left( \begin{array}{l} 20\\ 3 \end{array} \right)\left( \begin{array}{l} 20\\ 1 \end{array} \right)$ =228005 FMP $\left( \begin{array}{l} 20\\ 1 \end{array} \right)\left( \begin{array}{l} 20\\ 1 \end{array} \right)$ =400FMPP $\left( \begin{array}{l} 20\\ 1 \end{array} \right)\left( \begin{array}{l} 20\\ 2 \end{array} \right)$ =3800MMPP $\left( \begin{array}{l} 20\\ 2 \end{array} \right)\left( \begin{array}{l} 20\\ 2 \end{array} \right)$ =361006 FMMP $\left( \begin{array}{l} 20\\ 1 \end{array} \right)\left( \begin{array}{l} 20\\ 2 \end{array} \right)$ =3800 -
[1] PRANGE E. Some Cyclic Error-Correcting Codes with Simple Decoding Algorithms [R]. Cambridge: Air Force Cambridge Research Center, 1958. [2] WICKER S B. Error Control Systems for Digital Communication and Storage [M]. New Jersey: Prentice Hall, 1995. [3] MCELIECE R J. The Theory of Information and Coding [M]. 2nd ed.北京:电子工业出版社, 2002. [4] doi: https://www.computer.org/csdl/proceedings/apscc/2008/3473/00/3473a128-abs.html CHEN Y H, CHIEN C H, HUANG C H, et al. Efficient Decoding of Systematic (23, 12, 7) and (41, 21, 9) Quadratic Residue Codes [J]. Journal of Information Science and Engineering, 2010, 26: 1831-1843. [5] LIN T C, LEE H P, CHANG H C, et al. High Speed Decoding of the Binary (47, 24, 11) Quadratic Residue Code [J]. Information Sciences, 2010, 180: 4060-4068. doi: 10.1016/j.ins.2010.06.022 [6] doi: https://www.researchgate.net/publication/272912461_A_Memory_Improvement_on_Decoding_of_the_41_21_9_Quadratic_Residue_Code LEE H P, CHANG H C. A Memory Improvement on Decoding of the (41, 21, 9) Quadratic Residue Code [J]. International Journal of Computer Theory and Engineering, 2012, 4: 590-594. [7] ELIA M. Algebraic Decoding of the (23, 12, 7) Golay Codes [J]. IEEE Transactions on Information Theory, 1987, 33: 150-151. doi: 10.1109/TIT.1987.1057262 [8] WOLFMANN J. A Permutation Decoding of the (24, 12, 8) Golay code [J]. IEEE Transactions on Information Theory, 1983, 29: 748-750. doi: 10.1109/TIT.1983.1056726 [9] HE R, REED I S, TRUONG T K, et al. Decoding the (47, 24, 11) Quadratic Residue Code [J]. IEEE Transactions on Information Theory, 2001, 47: 1181-1186. doi: 10.1109/18.915677
计量
- 文章访问数: 737
- HTML全文浏览数: 459
- PDF下载数: 11
- 施引文献: 0