-
弱有效解是经济、决策理论、多目标优化理论以及最优控制与博弈论中的重要概念之一.对于多目标优化问题弱有效解的研究常常涉及目标函数与约束函数的凸性[1-3].众所周知,择一定理在研究多目标优化问题的最优性条件与对偶性中起着至关重要的作用.文献[4]提出像空间分析理论对约束优化问题进行统一研究.这类优化问题常常可等价地表示成一个参数系统的不可行性以及约束优化问题像空间中两个集合的分离性.随后,许多学者用像空间分析理论研究了向量优化问题、向量变分不等式等约束优化问题的最优性条件、对偶性、误差界、间隙函数以及非线性分离性等[5-11].在Banach空间中,Hiriart-Urruty[12]用定向距离函数(oriented distance function)Δ刻画非光滑优化问题的几何性质,从而得到了非凸优化问题的最优性必要条件.定向距离函数Δ也被称为一类非线性标量化函数[8-11],正是其显著的几何特征而被广泛应用于研究各类优化问题的最优性条件.后来,Zaffaroni[13]进一步研究了定向距离函数Δ的性质.
本文利用像空间分析理论研究一类锥约束多目标优化问题的最优性条件.首先,通过定向距离函数Δ引入一类不同于文献[11]的正则弱分离函数;然后借助该类正则弱分离函数建立了一个择一定理;最后,通过择一定理在不涉及函数凸性的条件下得到了锥约束多目标优化问题弱有效解的充分和必要最优性条件.
An Alternative Theorem for a Class of Cone Constrained Multiobjective Optimization Problems
-
摘要: 利用像空间分析理论研究一类锥约束多目标优化问题的最优性条件,通过定向距离函数引入一类正则弱分离函数,建立了一个择一定理.最后,通过择一定理在不涉及函数凸性的条件下得到了锥约束多目标优化问题弱有效解的充分和必要最优性条件.Abstract: Multiobjective optimization is a common problem in economic management and game theory. However, a great number of practical economic management problems are subject to the constraints of external and internal conditions. That is why constrained multiobjective optimization problems have aroused wide concern. Optimality conditions of multiobjective optimization problems are one of the important contents in the optimization theory. This paper is devoted to the study of the optimality conditions of a class of cone constrained multiobjective optimization problems by image space analysis. A class of regular weak separation functions is introduced by the oriented distance function, and an alternative theorem is established. Finally, some sufficient and necessary optimality conditions for cone constrained multiobjective optimization problems are obtained by the alternative theorem, without the convexity of the involved mappings.
-
Key words:
- multiobjective optimization /
- image space analysis /
- optimality condition /
- separation function .
-
[1] CHEN J W, CHO Y J, KIM J, et al. Multiobjective Optimization Problems with Modified Objective Functions and Cone Constraints and Applications [J]. J Glob Optim, 2011, 49(1): 137-147. doi: 10.1007/s10898-010-9539-3 [2] 陈加伟, 李军, 王金南.锥约束非光滑多目标优化问题的对偶及最优性条件[J].数学物理学报, 2012, 32(1): 1-12. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-SXWX201201002.htm [3] 周志昂.强G-预不变凸向量优化问题的最优性条件[J].西南大学学报(自然科学版), 2013, 35(1): 1-7. doi: http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xnnd201301013&dbname=CJFD&dbcode=CJFQ [4] GIANNESSI F. Constrained Optimization and Image Space Analysis [M]. London: Springer, 2005. [5] GIANNESSI F, MASTROENI G, PELLEGRINI L. On the Theory of Vector Optimization and Variational Inequalities. Image Space Analysis and Seperation [M] //GIANNESSI F. Vector Variational Inequalities and Vector Equilibria. London: Kluwer Academic, 2000: 153-215. [6] LI J, HUANG N J. Image Space Analysis for Vector Variational Inequalites with Matrix Inequality Constraints and Applications [J]. J Optim Theory Appl, 2010, 145(3): 459-477. doi: 10.1007/s10957-010-9691-4 [7] LI J, HUANG N J. Image Space Analysis for Variational Inequalites with Cone Constraints and Applications to Traffic Equilibria [J]. Sci China Math, 2012, 55(4): 851-868. doi: 10.1007/s11425-011-4287-5 [8] LI S J, XU Y D, ZHU S K. Nonlinear Seperation Approach to Constrained Extremum Problems [J]. J Optim Theory Appl, 2012, 154(3): 842-856. doi: 10.1007/s10957-012-0027-4 [9] XU Y D, LI S J. Nonlinear Seperation Functions and Constrained Extremum Problems [J]. Optim Lett, 2014, 8(3): 1149-1160. doi: 10.1007/s11590-013-0644-3 [10] XU Y D, LI S J. Gap Functions and Error Bounds for Weak Vector Variational Inequalities [J]. Optim, 2014, 63(9): 1339-1352. doi: 10.1080/02331934.2012.721115 [11] 罗彬, 王莲明, 张谋.约束向量优化问题的像空间分析[J].吉林大学学报(理学版), 2013, 51(6): 1068-1072. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-JLDX201306018.htm [12] HIRIART-URRUTY J B. Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces [J]. Math Oper Res, 1979, 4(1): 79-97. doi: 10.1287/moor.4.1.79 [13] ZAFFARONI A. Degrees of Efficiency and Degrees of Minimality [J]. SIAM J Control Optim, 2003, 42(3): 1071-1086. doi: 10.1137/S0363012902411532 [14] JEYAKUMAR V, OETTLI W, NATIVIDAD M. A Solvability Theorem for a Class of Quasiconvex Mappings with Applications to Optimization [J]. J Math Anal Appl, 1993, 179(2): 537-546. doi: 10.1006/jmaa.1993.1368
计量
- 文章访问数: 729
- HTML全文浏览数: 316
- PDF下载数: 6
- 施引文献: 0