-
近年来,铌铁的应用领域不断拓展,冶金行业主要用来冶炼含铌钢.在高温钢和工具钢中,铌的加入可以提高钢的热强度性、抗蠕变性和韧性.在铁素体不锈钢中,加入铌可以改善钢的焊接性能和抗蚀性能等.铌铁中硅、铝、钛、锰元素的含量对铌铁的性质也很重要.然而,硅的检测方法不多,国家标准采用重量法[1],但对质量分数小于1.0%的硅不能测定.文献报导的方法大多用分光光度法,铝和钛也多用光度法与滴定法测定[2-4],这些方法都存在操作步骤繁琐和周期长的缺点;也有应用ICP-AES光谱法测定硅、铝等多元素的分析方法[5-21],但用硫酸高温冒烟处理样品技术,易造成硅损失,使测定结果偏低.本研究通过大量的试验,采用硝酸、氢氟酸和过氧化氢在常温下溶解样品,找出酸的最佳比例;建立了电感耦合等离子体光谱法同时测定铌铁中硅、铝、钛、锰的质量分数的分析方法,试验结果表明方法准确可靠.
Simultaneous Determination of Silicon, Aluminum, Titanium and Manganese in Ferroniobium by Inductively Coupled Plasma-Atomic Emission Spectrometry
-
摘要: 试验了HNO3和HF在常温下溶解铌铁样品及采用基体匹配来消除共存元素的干扰,钇内标加入法提高了该方法的稳定性,同时考察了电感耦合等离子体光谱仪的RF功率、雾化气流量和辅助气流量等参数,选择了仪器的最佳分析参数.利用ICP光谱仪的分析软件,选择适当的背景点来扣除背景,通过编辑分析程序,实现了自动绘制工作曲线和计算数据结果.试验表明,用该方法测定铌铁中硅、铝、钛、锰的成分简单、快速、准确.Abstract: Ferroniobium samples dissolved by HNO3 and HF at room temperature were examined, and the matrix matching method was used to eliminate interference of coexisting elements. The stability was enhanced by adding yttrium as the internal standard. In addition, such parameters as RF power, atomized air flow and auxiliary air flow for the inductively coupled plasma spectrometer were investigated, and the optimum analysis parameters for the instruments were determined. An editing analysis program of the ICP analysis software was used to realize automatic drawing of the working curves and the calculation of the data. The results of an experiment showed that this method is simple, fast and accurate and, therefore, is recommended for application in determining silicon, aluminum, titanium or manganese in ferroniobium.
-
Key words:
- inductively coupled plasma /
- ferroniobium /
- silicon-aluminum /
- titanium-manganese .
-
表 1 元素标准系列溶液加入量
mg 标准系列编号 Al Ti Mn Si 1 0 0 0 0 2 0.50 0.10 0.20 0.50 3 1.00 0.20 0.40 1.50 4 2.00 0.40 0.80 2.50 5 3.00 0.80 1.00 3.50 表 2 HF用量对样品结果的影响
编号 HNO3加入量/
mLHF加入量/
mL样品结果/% Si Al Ti Mn Ⅰ 5 1 Ⅱ 5 2 0.46 1.14 0.64 0.38 Ⅲ 5 3 0.54 1.16 0.66 0.43 Ⅳ 5 4 0.56 1.17 0.66 0.45 Ⅴ 5 5 0.61 1.17 0.67 0.48 Ⅵ 5 6 0.61 1.17 0.67 0.48 表 3 精密度试验结果
% 样品 元素 测定值 平均值 相对标准偏差 铌铁 Si 1.02, 1.02, 1.05, 1.03, 1.01, 0.99, 1.01, 0.98, 0.97, 1.00 1.01 2.37 Al 1.17, 1.16, 1.17, 1.17, 1.15, 1.16, 1.17, 1.18, 1.17.1.16 1.17 0.72 Ti 0.67, 0.67, 0.68, 0.66, 0.67, 0.67, 066, 0.65, 0.66, 0.67 0.67 1.27 Mn 0.40, 0.41, 0.41, 0.42, 0.40, 0.39, 0.40, 0.40, 0.41, 0.40 0.40 2.05 表 4 标准样品的测定结果
% 标准样品编号 Al Ti Si 标准值 测得值 标准值 测得值 标准值 测得值 GSB03-2202-2008 0.89 0.865 0.490 0.469 1.01 1.02 EURO-CRM579-1 1.86 1.824 0.567 0.547 1.03 1.06 表 5 加标回收率试验
元素 Al Ti Mn Si 加入值/mg 1.00 0.50 0.50 1.00 测定值/mg 0.99 0.49 0.51 0.98 回收率/% 99 98 102 98 -
[1] 冶金工业信息标准研究院标准化研究所, 中国标准出版社第二编辑室.钢铁及铁合金化学分析方法标准汇编[M].北京:中国标准出版社, 2002. [2] 鞍钢钢铁研究所, 沈阳钢铁研究所.实用冶金分析:方法与基础[M].沈阳:辽宁科学技术出版社, 1990. [3] 曹宏燕.冶金材料分析技术与应用[M].北京:冶金工业出版社, 2008. [4] 王海舟.铁合金分析[M].北京:科学出版社, 2003. [5] 陶俊.电感耦合等离子体原子发射光谱法测定铌铁中多元素[J].冶金分析, 2009, 29(2): 69-72. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200902014.htm [6] doi: https://www.researchgate.net/publication/222908268_Fundamental_studies_of_the_sampling_process_in_an_inductively_coupled_plasma_mass_spectrometer_III_Monitoring_the_ion_beam CHAMBERS D M, POEHLMAN, YANG P, et al. Fundamental Studies of the Sampling Process in an Inductively Coupled Plasma Mass Spectrometer [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1991, 46(617): 741-784. [7] NUNES A M, SOUSA R A, SILVA C S, et al. Fast Determination of Fe, Mg, Mn, P and Zn in Meat Samples by Inductively Coupled Plasma Optical Emission Spectrometry After Alkaline Solubilization [J]. Journal of Food Composition and Analysis, 2013, 32(1): 1-5. doi: 10.1016/j.jfca.2013.08.004 [8] 邵海舟, 刘成花.电感耦合等离子体原子发射光谱法测定铌铁中铌钛钽硅铝磷[J].冶金分析, 2011, 31(12): 54-57. doi: 10.3969/j.issn.1000-7571.2011.12.012 [9] PENG Tian-you, DU Ping-wu, HU bin, et al. Direct Analysis of Titanium Dioxide Solid Powder by Fluorination Assisted Electrothermal Vaporization Inductively Coupled Plasma Atomic Emission Spectrometry [J]. Analytica Chimica Acta, 2000, 421(1): 75-81. doi: 10.1016/S0003-2670(00)01025-4 [10] ANDRADE J B, NUNES G S, VEIGA M P, et al. Spinola Costa Spectrophotometric and Inductively Coupled Plasma Atomic Emission Spectrometric Determination of Titanium in Ilmenites After Rapid Dissolution with Phosphoric Acid [J]. Talanta, 1997, 44(2): 165-168. doi: 10.1016/S0039-9140(96)02026-7 [11] 郑海东, 袁萍.ICP-AES法测定铌铁中钛钽铜铝磷[J].铁合金, 2009, 40(2): 47-48. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-THJN200902025.htm [12] PEUKERT A, SEUBERT A. Characterization of an Aluminium(III)-Citrate Species by Means of Ion Chromatography with Inductively Coupled Plasma-Atomic Emission Spectrometry Detection [J]. Journal of Chromatography A, 2009, 1216(45): 7946-7949. doi: 10.1016/j.chroma.2009.09.025 [13] 庞昌信, 李燕发. ICP-AES法测定铌铁合金中的3种金属杂质[J].有色金属分析, 2003(3): 10-11. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-FGGL201302068.htm [14] MILLS A A, MACEDONE J H, FARNSWORTH P B. High Resolution Imaging of Barium Ions and Atoms Near the Sampling Cone of an Inductively Coupled Plasma Mass Spectrometer [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, 61(9): 1039-1049. doi: 10.1016/j.sab.2006.10.006 [15] 高智席, 吴艳红, 赵华俊, 等.电感耦合等离子体质谱法(ICP-MS)测定沼液中重金属元素[J].西南大学学报(自然科学版), 2013, 35(1): 104-108. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-XNND201301021.htm [16] WANG Zheng, ZHANG Jun-ye, ZOU Hui-jun, et al. Model and Experimental Investigations of Aluminum Oxide Slurry Transportation and Vaporization Behavior for Nebulization Inductively Coupled Plasma Optical Emission Spectrometry [J]. Talanta, 2013, 107: 338-343. doi: 10.1016/j.talanta.2013.01.045 [17] SOUZA A L, LEMOS S G, OLIVEIRA P V. A Method for Ca, Fe, Ga, Na, Si and Zn Determination in Alumina by Inductively Coupled Plasma Optical Emission Spectrometry After Aluminum Precipitation [J]. Spectrochimica Acta Part B, 2011, 66(5): 383-388. doi: 10.1016/j.sab.2011.03.001 [18] doi: http://www.sciencedirect.com/science/article/pii/S0304389410001901 REZAEEA M, YAMINIA Y, KHANCHIB A, et al. A Simple and Rapid New Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop Combined with Inductively Coupled Plasma-Optical Emission Spectrometry for Preconcentration and Determination of Aluminium in Water Samples [J]. Journal of Hazardous Materials, 2010, 178(113): 766-770. [19] 马清文, 王际祥, 薛明浩, 等.光度法快速测定铌铁中铌[J].山东冶金, 2008, 6(30): 55-56. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-LGKI200504036.htm [20] 李韶梅, 王国增, 赵军, 等.电感耦合等离子体原子发射光谱法测定铌铁中铌和钽[J].冶金分析, 2012, 32(3): 48-50. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201121041.htm [21] 强华.钛合金复杂型腔电火花加工工艺参数的试验研究[J].西南师范大学学报(自然科学版), 2014, 39(9): 138-140. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201409024.htm