-
在控制工程中,反应扩散方程的边界控制已有很多研究[1-4].但大多是单个反应扩散方程的控制.现在,多个反应扩散方程边界控制也有一些研究成果[5-9].本文考虑如下控制系统:
其中:标量
$ {u_i}\left( {x, t} \right) \in \mathbb{R}, i = 1, \cdots, n$ 是反应扩散方程的状态;λij是常数;${{v}_{i}}\left( t \right)\in \mathbb{R},i=1,\cdots ,n$ 是边界控制输入.把上面的系统写成如下的矩阵形式其中
假设A是正定矩阵;矩阵A和Λ是可交换矩阵;0是零矩阵;V(t)是边界控制输入.控制设计的目标是让整个闭环系统的状态量(u1(x,t),u2(x,t),…,un(x,t))在某种范数意义下指数稳定.
本文所使用的变换是矩阵形式的反应扩散方程的Backstepping方法,使复杂的系统简单化,但求变换和逆变换时,需要运用数学矩阵运算方法.然后用Lypunov方法证明闭环系统在控制律下是指数稳定的.
On the Boundary Control of N Coupled RDE Systems
-
摘要: 主要研究了n个耦合反应扩散方程的边界控制问题.首先运用矩阵的方法,简化原系统的表达,然后根据变换和相应条件得到核方程,进而得到核方程的解和控制律.通过逆变换及Lypunov证明闭环系统是指数稳定的.Abstract: The boundary control of n coupled reaction-diffusion equations is considered. Due to the complexity of n coupled reaction diffusion equations, it is necessary to apply the matrix method for the original system to be expressed in a simple way before the kernel equation is obtained according to the transformation and the corresponding conditions. Then, the kernel equation of solution and control law may be obtained. In this paper we prove by means of inverse transformation and the Lypunov function that the closed loop system is exponentially stable.
-
Key words:
- coupled system /
- closed-loop system /
- boundary control /
- stability .
-
[1] KRSTIC M, SMYSHLYAEV A. Boundary Control of PDEs: a Course on Backstepping Design [M]. Philadelphia: SIAM, 2008: 13-63. [2] LIU W J. Boundary Feedback Stabilization of an Unstable Heat Equation [J]. SIAM J. CONTROL OPTIM, 2003, 42(3): 1033-1043. doi: 10.1137/S0363012902402414 [3] SMYSHLYAEV A, KRSTIC M. Adaptive Control of Parabolic PDEs [M]. Princeton: Princeton University Press, 2010. [4] 赵娜, 谢成康, 司元超.一类级联系统的边界稳定[J].西南大学学报(自然科学版), 2015, 37(1): 93-98. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=2015-01-093&flag=1 [5] BACCOIL A, PISANO A, ORLOV Y. Boundary Control of Counpled Reaction-Diffusion Processes with Constan Parameters [J]. Automatic, 2015, 54: 80-90. doi: 10.1016/j.automatica.2015.01.032 [6] MICHEL J, RAFAEL C, KRSTIC M, et al. Local Exponential H2 Stabilization of a 2×2 Quasilinear Hyperbolic System using Backstepping [J]. SIAM Journal of Control and Optimization, 2013, 51(3): 2005-2035. doi: 10.1137/120875739 [7] doi: http://www.sciencedirect.com/science/article/pii/S0167691114000607 VAZEQUEZ R, KRSTIC M. Maracm Q-Functions and Explict Kernels for Stabilization of 2×2 Linear Hyperbolic Systems with Consant Coefficients [J]. System & Control Letters, 2014, 68: 33-42. [8] MEGLIO F, VAZQUEZ R, KRSTIC M, et al. Backstpping Stabilization of an Underactuated 3×3 Linear Hyperbolic System of a Fluid Flow Equations [C]. 2012 ACC. New York: IEEE Press, 2012. [9] MEGLIO F, VAZQUEZ R, KRSTIC M. Stabilization of a System of n+1 Coupled First-Order Hyperbolic Linear PDEs with a Single Boundary Input [J]. IEEE Transtation on Automatic Control, 2013, 58(12): 3097-3111. doi: 10.1109/TAC.2013.2274723 [10] APOSTOL T M. Mathematical Analysis [M]. 2版.北京:机械工业出版社, 2004.
计量
- 文章访问数: 741
- HTML全文浏览数: 367
- PDF下载数: 45
- 施引文献: 0