-
Gronwall积分不等式[1]是最著名的积分不等式,表述为:
其中:u和f是区间[a,b]上的非负连续函数,c≥0是常数,不等式中的未知函数u有估计式
因为Gronwall积分不等式是研究微分方程、积分方程解的存在性、有界性、稳定性和唯一性等定性性质的重要工具,数学工作者不断地对它的形式进行各种推广,使它的应用范围不断扩大[2-15]. 1997年,文献[2]研究了奇异积分不等式
2008年,文献[5]研究了弱奇异积分不等式
2011年,文献[6]研究了Gronwall-ellman-Pachpatte型积分不等式.
本文受文献[2-3, 5-9]的启发研究下面的弱奇异积分不等式
不等式(4) 把文献[2]中的不等式(1) 推广成包含多个奇异积分项的不等式,不等式(4) 把文献[6]中的不等式(3) 推广成奇异不等式.本文利用文献[8-9]中给出的新的分数阶导数与分数阶积分的概念与运算法则研究奇异积分不等式.
Estimation of Unknown Functions of a Class of Nonlinear Weakly Singular Triple Integral Inequalities and Its Application
-
摘要: 研究了一类积分项外包含了非常数项的非线性弱奇异三重积分不等式.利用conformable分数阶导数与conformable分数阶积分的概念与运算法则、变量替换技巧和放大技巧等分析手段,给出了不等式中未知函数的上界估计.最后举例说明所得结果可以用来研究conformable分数阶积分方程解的定性性质.
-
关键词:
- 弱奇异三重积分不等式 /
- conformable分数阶积分 /
- conformable分数阶导数 /
- 分析技巧 /
- 显上界估计
Abstract: In this paper, we investigate a class of nonlinear weakly singular triple integral inequalities, which include a nonconstant term outside the integrals. The upper bounds of the embedded unknown functions are estimated explicitly by adopting novel analysis techniques, such as the definitions and rules of conformable fractional differential and conformable fractional integration, the techniques of change of variable, and the method of amplification. Finally, examples are cited to illustrate that the derived results can be applied in the study of qualitative properties of solutions of conformable fractional integral equations. -
[1] GRONWALL T H. Note on the Derivatives with Respect to a Parameter of the Solutions of a System of Differential Equations [J]. Ann Math, 1919, 20(4): 292-296. doi: 10.2307/1967124 [2] MED^VED M. A New Approach to an Analysis of Henry Type Integral Inequalities and Their Bihari Type Versions [J]. J Math Anal Appl, 1997, 214(2): 349-366. doi: 10.1006/jmaa.1997.5532 [3] doi: http://www.sciencedirect.com/science/article/pii/S0096300304004059 AGARWAL R P, DENG Sheng-fu, ZHANG Wei-nian. Generalization of a Retarded Gronwall-like Inequality and Its Applications [J]. Appl Math Comput, 2005, 165(3): 599-612. [4] MA Q H, PEARIC′ J. Estimates on Solutions of Some New Nonlinear Retarded Volterra-Fredholm Type Integral Inequalities [J]. Nonlinear Anal, 2008, 69(2): 393-407. doi: 10.1016/j.na.2007.05.027 [5] MA Q H, PECĉ′ARIC J. Some New Explicit Bounds for Weakly Singular Integral Inequalities with Applications to Fractional Differential and Integral Equations [J]. J Math Anal Appl, 2008, 341(2): 894-905. [6] doi: http://www.sciencedirect.com/science/article/pii/S009630031100316X ABDELDAIM A, YAKOUT M. On Some New Integral Inequalities of Gronwall-Bellman-Pachpatte Type [J]. Appl Math Comput, 2011, 217(20): 7887-7899. [7] doi: https://link.springer.com/article/10.1186/1029-242X-2014-4 ZHENG Bin. Explicit Bounds Derived by Some New Inequalities and Applications in Fractional Integral Equations [J]. Journal of Inequalities and Applications, 2014, 2014(4): 1-12. [8] KHALIL R, Al HORANI M, YOUSEF A, et al. A New Denition of Fractional Derivative [J]. J Comput Appl Math, 2014, 264(5): 65-70. [9] doi: http://dl.acm.org/citation.cfm?id=2802968 ABDELJAWAD T. On Conformable Fractional Calculus [J]. J Computational Appl Math, 2015, 279(C): 57-66. [10] 许佳, 钟守铭. Gronwall不等式的推广及其在分数阶微分方程中的应用[J].西华大学学报(自然科学版), 2012, 31(5): 62-64. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-SCGX201205018.htm [11] 王五生, 李自尊.一类非连续函数积分不等式及其应用[J].西南大学学报(自然科学版), 2012, 34(2): 96-100. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=z20120218&flag=1 [12] 杨必成, 陈强.一个较为精确的半离散的Hilbert型不等式[J].西南大学学报(自然科学版), 2013, 35(6): 72-77. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201306014&flag=1 [13] 巫伟亮.一个新的Hilbert型积分不等式及其逆[J].西南师范大学学报(自然科学版), 2013, 38(12): 38-42. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-ZJSZ201004009.htm [14] 梁英.一类时滞弱奇异Wendroff型积分不等式[J].四川师范大学学报(自然科学版), 2014, 37(4): 493-496. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-SCSD201404010.htm [15] 卢钰松, 王五生.一类含有p次幂的Volterra-Fredholm型非线性迭代积分不等式[J].西南大学学报(自然科学版), 2015, 27(8): 76-80. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=2015-08-076&flag=1 [16] 侯宗毅, 王五生.一类变下限非线性Volterra-Fredholm型积分不等式及其应用[J].西南师范大学学报(自然科学版), 2016, 41(2): 21-25. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201602005.htm
计量
- 文章访问数: 730
- HTML全文浏览数: 294
- PDF下载数: 20
- 施引文献: 0