-
平凡西罗限制模是一类特别的内平凡模,内平凡模是内同态环(自同态环)在稳定模范畴中平凡的kG-模[1],它是稳定模范畴的Picard群的元素[2],是内置换模的组成部分,而内置换模还是p-可解群和p-幂零群等某些有限群的不可约模的源;平凡西罗限制模还是一种特别的p-置换模,而p-置换模在块代数的p-置换等价和Dade群的结构方面都有重要应用[3].
在文献[4]中,J. Green首次提出了一种关于有限群G上的不可分解模与其子群H上的不可分解模之间的转移定理,也就是著名的格林对应定理;在文献[5]中,他再次提出该定理,并用于研究有限群公理化表示中的G-函子上的转移定理.如今,格林对应定理已经成为有限群表示论中的十分重要的研究工具,例如,文献[6]研究了模覆盖和块覆盖与格林对应之间的关系.
本文研究平凡西罗限制模和它的格林对应,并刻画了平凡西罗限制kG-模的盖、顶、维数、分解结构;证明了不可分解平凡西罗限制kG-模的格林对应恰是它的限制模的盖,以及,对于群G的子群H和西罗p-子群P,若任意x∈G-H,都有P∩Hx=1,那么,不可分解平凡西罗限制kH-模的诱导模仍是平凡西罗限制kG-模.
此时,格林对应建立了不可分解平凡西罗限制kG-模同构类和不可分解平凡西罗限制kH-模同构类之间的一一对应.特别地,若子群H在群G中是强嵌入的,那么,格林对应也建立了不可分解平凡西罗限制kG-模同构类和不可分解平凡西罗限制kH-模同构类之间的一一对应.
On Green Correspondence for the kG-Module with Trivial Sylow Restriction
-
摘要: 研究了平凡西罗限制kG-模,刻画了不可分解平凡西罗限制kG-模的格林对应,证明了,若任意x∈G-H,都有P∩Hx=1,特别地,若H是G的强p-嵌入子群,那么,格林对应建立了不可分解平凡西罗限制kG-模的同构类和不可分解平凡西罗限制kH-模的同构类之间的一一对应.Abstract: In this paper, we study the kG-module with trivial Sylow restriction, investigate its Green correspondent and prove that if P∩Hx=1 for any x∈G-H and, in particular, H is a strongly p-embedded subgroup of G, then Green correspondence sets up a bijection between the isomorphism classes of the indecomposable kG-module with trivial Sylow restriction and of the indecomposable kH-module with trivial Sylow restriction.
-
[1] doi: https://www.researchgate.net/publication/37466052_The_classification_of_endo-trivial_modules CARLSON J F, THEVENAZ J. The Classification of Endo-Trivial Modules [J]. Invent Math, 2004, 158(2): 389-411. [2] CARLSON J F, ROUQUIER R. Self-Equivalences of Stable Module Categories [J]. Math Z, 2000, 233(1): 165-178. doi: 10.1007/PL00004789 [3] PEREPELITSKY P N. p-Permutation Equivalences Between Blocks of Finite Groups [D]. California: University of California, 2014. http://escholarship.org/uc/item/49p3r4gg [4] GREEN J A. A Transfer Theorem for Modular Representations [J]. Journal of Algebra, 1964, 1(1): 73-84. doi: 10.1016/0021-8693(64)90009-2 [5] doi: http://linkinghub.elsevier.com/retrieve/pii/0022404971900119 GREEN J A. Axiomatic Representation Theory for Finite Groups [J]. Journal of Pure & Applied Algebra, 1971, 1(1): 41-77. [6] COCONET T, MARCUS A. Module Covers and the Green Correspondence [J]. Journal of Algebra, 2015, 432: 62-71. doi: 10.1016/j.jalgebra.2015.03.004 [7] 徐明曜.有限群导引:上册[M].北京:科学出版社, 1999. [8] 徐明曜, 黄建华, 李慧陵.有限群导引:下册[M].北京:科学出版社, 1999. [9] WEBB P. A Course in Finite Group Representation Theory [M]. New York: Cambridge University Press, 2016. [10] THEVENAZ J. G-Algebras and Modular Representation Theory [M]. Oxford: The Clarendon Press, 1995. [11] doi: https://www.researchgate.net/publication/236834682_Simple_endotrivial_modules_for_quasi-simple_groups LASSUEUR C, MALLE G, SCHULTE E. Simple Endotrivial Modules for Quasi-Simple Groups [J]. Journal Für Die Reine Und Angewandte Mathematik, 2016, 712: 141-174. [12] doi: http://arxiv.org/abs/0901.0805?context=math.GR PARKER C, STROTH G. Strongly p-Embedded Subgroups [J]. Pure & Applied Mathematics Quartely, 2009, 7(4): 797-858. [13] doi: https://www.researchgate.net/publication/266513396_Modular_Representation_Theory_of_Finite_Groups_with_T_I_Sylow_p-Subgroups BLAU H, MICHLER G. Modular Representation Theory of Finite Groups with T.I. Sylow p-Subgroups [J]. Transactions of The American Mathematical Society, 1990, 319(2): 417-468.
计量
- 文章访问数: 950
- HTML全文浏览数: 449
- PDF下载数: 36
- 施引文献: 0