-
积分不等式是研究微分方程和积分方程的重要工具.通过对积分不等式中未知函数的估计,可以研究某些微分方程解的存在性、有界性、唯一性和稳定性等定性性质[1-17].通过对非连续函数积分不等式中未知函数进行估计,可以研究某些脉冲微分方程和解的一些性质.
文献[3]研究了积分不等式
文献[7]研究了下面的非连续函数积分不等式
其中,a(t)>0,q(t)≥1,f(t)≥0,g(t)≥0,βi≥0.
文献[16]研究了含有时滞的脉冲积分不等式
文献[12]研究了含有未知函数的复合函数的积分不等式
这里w(u)是定义在[0,∞)上的单调不减连续函数且当u>0时,w(u)>0.本文在上述研究成果的基础上,研究了一类含三项未知函数复合的非连续函数积分不等式
其中,u(t)定义在是[t0,∞)上的只有第一类不连续点
$\left\{ {{t}_{i}}:{{t}_{0}} < {{t}_{1}} < {{t}_{2}}\cdots, \mathop {\lim }\limits_{i \to \infty } {\mkern 1mu} {t_i}=\infty \right\} $ 的非负逐段连续函数,ϕ(u)是定义在[0,∞)上的正的严格单调递增函数,m>1,βi≥0,m,βi是给定的常数.
Generalization of a Class of Integral Inequalities with Gronwall-Bellman Type for Discontinuous Functions
-
摘要: 研究了含有未知函数的两个非线性项的非连续函数积分不等式,利用分析技巧给出了未知函数的上界估计,并利用此结果估计了脉冲微分方程的上界.
-
关键词:
- 非连续函数积分不等式 /
- 未知函数估计 /
- 脉冲微分系统
Abstract: In this paper, we give the upper bound estimation of an unknown function containing three nonlinear terms of integral inequality for discontinuous functions. The result is used to estimate the upper bounds of impulsive differential equations. -
[1] doi: https://www.researchgate.net/profile/Olivia_Constantin/publication/222374450_A_Retarded_Gronwall-Like_Inequality_and_Its_Applications/links/546cecbe0cf2193b94c57ac1.pdf?disableCoverPage=true AGARWAL R P, DENG Sheng-fu, ZHANG Wei-nian. Generalization of a Retarded Gronwall-Like Inequality and Its Applications [J]. Appl Math Comput, 2005, 165: 599-612. [2] doi: https://www.researchgate.net/publication/286787470_About_asymptotical_stability_on_linear_approximation_of_the_systems_with_impulse_influence BORYSENKO S D. About Asymptotical Stability on Linear Approximation of the Systems with Impulse Influence [J]. Ukrain Mat Zh, 1983, 35(2): 144-150. [3] BORYSENKO S D. About One Integral Inequality for Piece-Wise Continuous Functions [M]. Proc. XInt: Kravchuk Conf, Kyiv, 2004: 323. [4] BORYSENKO S D, CIARLETTA M, IOVANE G. Integro-Sum Inequalities and Motion Stability of Systems with Impulse Perturbations [J]. Nonlnear Anal, 2005, 62: 417-428. doi: 10.1016/j.na.2005.03.032 [5] GLLO A, PICCIRILO A M. About New Analogies of Gronwall-Bellman-Bihari Type Inequalities for Discontinuous Functions and Estimated Solutions for Impulsive Differential Systems [J]. Nonlnear Anal, 2007, 67: 1550-1559. doi: 10.1016/j.na.2006.07.038 [6] GLLO A, PICCIRILO A M. About Some New Generalizations of Bellman-Bihari Results for Integro-Functional Inequalities with Discontinuous Functions and Applications [J]. Nonlnear Anal, 2009, 71: e2276-e2287. doi: 10.1016/j.na.2009.05.019 [7] IOVANE G. Some New Integral Inequalities of Bellman-Bihari Type with Delay for Discontinuous Functions [J]. Nonlnear Anal, 2007, 66: 498-508. doi: 10.1016/j.na.2005.11.043 [8] 李自尊.脉冲积分不等式未知函数的估计[J].四川师范大学学报(自然科学版), 2013, 36(2): 258-262. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-SCSD201302023.htm [9] 柳长青, 李自尊.一类新的非连续函数积分不等式及其应用[J].理论数学, 2013(3): 4-8. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-XNND201202017.htm [10] 孟东沅.一类新型不连续函数的积分不等式及应用[J].数学的实践与认识, 2009, 39: 161-166. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-SSJS200902025.htm [11] doi: https://www.researchgate.net/publication/267665454_Nonlinear_integral_inequalities_with_delay_for_discontinuous_functions_and_their_applications MI Yu-zhen, DENG Sheng-fu, LI Xiao-pei. Nonlinear Integral Inequalities with Delay for Discontinuous Functions and Their Applications [J]. J Inequal Appl, 2013, 430: 11. [12] 米玉珍, 钟吉玉.非连续函数的Bellman-Bihari型积分不等式的推广[J].四川大学学报(自然科学版), 2015, 52(1): 33-38. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201206012.htm [13] MITROPOLSKIY YU A, IOVANE G, BORYSENKO S D. About a Generalization of Bellman-Bihari Type Inequalities for Discontinuous Functions and Their Applications [J]. Nonlnear Anal, 2007, 66: 2140-2165. doi: 10.1016/j.na.2006.03.006 [14] doi: http://linkinghub.elsevier.com/retrieve/pii/S009630030700238X WANG Wu-sheng. A Generalized Retarded Gronwall-Like Inequality in Two Variables and Applications to BVP [J]. Appl Math Comput, 2007, 191(1): 144-154. [15] WANG Wu-sheng, LI Zi-zun. A New Class of Impulsive Integral Inequalities and Its Application [C]. 2011 International Conference on Multimedia Technology (ICMT 2011), 2011: 1897-1899. http://ieeexplore.ieee.org/document/6002439/ [16] 严勇.一类带脉冲项的Gronwall-Bellman型积分不等式的推广及应用[J].四川师范大学学报(自然科学版), 2013, 36(4): 603-609. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-SCSD201304024.htm [17] doi: http://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-015-0943-6 ZHENG Zhao-wen, GAO Xin, SHAO Jing. Some New Generalized Retarded Inequalities for Discontinuous Functions and Their Applications [J]. J Inequal Appl, 2016(7): 14.
计量
- 文章访问数: 962
- HTML全文浏览数: 513
- PDF下载数: 66
- 施引文献: 0