-
众所周知,变分不等式在优化理论和方法、经济管理与交通等方面都有着广泛的应用[1-3].间隙函数的概念首次被引入用于凸优化问题的研究,随后才应用于变分不等式.一方面,由于间隙函数将变分不等式问题转换为等价的优化问题,故可用优化求解法和算法来求得变分不等式的解.另一方面,间隙函数在设计新的全局收敛算法和分析一些迭代方法的收敛速率以及导出误差界等方面非常有用[4-5].
本文主要研究带锥约束的变分不等式,旨在利用像空间分析得到间隙函数.像空间分析法是一个非常有力的工具,用于研究各种类型的问题,它把各类问题等价地表示成一个参数系统的不可行性以及约束优化像空间中两个集合的分离性,近年来,像空间分析法受到相当大的关注[6-9].
本文由三部分组成.第一部分简要回顾了一些准备知识,并分析了像空间分析的一般特征;第二部分利用像空间分析,给出了带锥约束变分不等式的两个间隙函数;第三部分利用两个间隙函数,得到了在逆强伪单调假设条件下带锥约束变分不等式的解集的误差界.
Gap Functions and Error Bounds for a Class of Variational Inequalities with Cone Constraints
-
摘要: 鉴于间隙函数与误差界在优化方法中有重要的作用,特别地,误差界能刻画可行点和变分不等式解集之间的有效估计距离.利用像空间分析法,构造了带锥约束变分不等式的间隙函数.然后,利用此间隙函数,得到了带锥约束变分不等式的误差界.Abstract: The gap function and the error bound play an important role in optimization methods and the error bound, especially, can characterize the effective estimated distance between a feasible point and the solution set of variational inequalities. In this article, by using the image space analysis, gap functions for a class of variational inequalities with cone constraints are proposed. Moreover, error bounds, which provide an effective estimated distance between a feasible point and the solution set, for the variational inequalities are established via the gap functions.
-
Key words:
- constrained variational inequality /
- image space analysis /
- gap function /
- error bound .
-
[1] FACCHINEI F, PANG J S. Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research [M]. New York(NY): Springer-Verlag, 2003. [2] FERRIS M C, PANG J S. Engineering and Economic Applications of Complementarity Problems [J]. SIAM Rev, 1997, 39(4): 669-713. doi: 10.1137/S0036144595285963 [3] HARKER P T, PANG J S. Finite-Dimensional Variational Inequalities and Nonlinear Complementarity Problems: A Survey of Theory, Algorithms and Applications [J]. Math Program, 1990, 48: 161-220. doi: 10.1007/BF01582255 [4] doi: https://www.researchgate.net/publication/267091090_Regularized_gap_functions_and_error_bounds_for_vector_variational_inequalities CHARITHA C, DUTTA J. Regularized Gap Functions and Error Bounds for Vector Variational Inequalities [J]. Pac J Optim, 2011, 6(3): 497-510. [5] doi: http://www.researchgate.net/publication/245793180_Convergence_for_variational_inequalities_and_generelized_variational_inequalities LIGNOLA M B, MORGAN J. Convergence for Variational Inequalities and Generelized Variational Inequalities [J]. Atti Sem mat fis univ modena, 1997, 2: 377-388. [6] LI J, HUANG N J. Image Space Analysis for Variational Inequalities with Cone Constraints Applications to Traffic Equilibria [J]. Sci China Math, 2012, 55(4): 851-868. doi: 10.1007/s11425-011-4287-5 [7] doi: http://journal.tms.org.tw/index.php/TJM/article/view/518 MASTROENI G, PANICUCCI B, PASSACANTANDO M, et al. A Separation Approach to Vector Quasi-Equilibrium Problems: Saddle Point and Gap Function [J]. Taiwan J Math, 2009, 13(2): 657-673. [8] doi: https://www.researchgate.net/publication/295897463_Nonlinear_separation_approach_to_inverse_variational_inequalities XU Y D. Nonlinear Separation Approach to Inverse Variational Inequalities [J]. Optimization, 2016, 28: 1-21. [9] doi: https://www.waterstones.com/book/constrained-optimization-and-image-space-analysis-separation-of-sets-and-optimality-conditions-v-1/franco-giannessi/9780387247700 GIANNESSI F. Constrained Optimization and Image Space Analysis. Vol.1. Separation of Sets and Optimality Conditions [J]. New York(NY): Springer, 2006, 48(2): 429-431. [10] GERTH C, WEIDNER P. Nonconvex Separation Theorems and Some Applications in Vector Optimization [J]. J Optim Theory Appl, 1990, 67(2): 297-320. doi: 10.1007/BF00940478 [11] doi: http://www.springer.com/gp/book/9783540505419 LUC D T. Theory of Vector Optimization [J]. Springer-Verlag, 2006, 319: 1-70. [12] CHEN G Y, HUANG X X, YANG X Q. Vector Optimization: Set-Valued and Variational Analysis. Lecture Notes in Economics and Mathematical Systems [M]. Berlin: Springer, 2005, 541.
计量
- 文章访问数: 1018
- HTML全文浏览数: 483
- PDF下载数: 65
- 施引文献: 0