-
考虑下列合作椭圆方程组
其中:x∈Ω,Ω⊂
$\mathbb{R}$ N(N≥4) 是一个具有光滑边界的有界区域,0∈Ω,a,b,c∈R,a>0,c>0,b2-ac<0.设∇F(u,v)=(Fu(u,v),Fv(u,v))满足条件:(A) F∈C1((
$\mathbb{R}$ )2,$\mathbb{R}$ +),F(0,0)=0.当(u,v)≠(0,0) 时,F(u,v)>0,F(tu,tv)=tpF(u,v)(t>0),2<p≤2*,2*=$\frac{{2N}}{{N - 2}}$ 是临界Sobolev指数.设z=(u,v),条件(A)可推出欧拉恒等式:
其中:M=max {F(u,v)|(u,v)∈
$\mathbb{R}$ 2,|u|2+|v|2=1}>0,|z|p=|u|p+|v|p.设空间
$H_0^1$ (Ω)以及Lp(Ω)中的范数设a>0,c>0,b2-ac<0,则矩阵
存在两个特征值0<λ1≤λ2,au2+2buv+cv2≥0,且
设特征值问题(-Δ,
$H_0^1$ (Ω))的第一特征值为μ1>0,相应的特征函数φ1>0.在Banach空间E=
$H_0^1$ (Ω)×$H_0^1$ (Ω)中定义范数近来,关于含临界指数椭圆方程组解的存在性得到了广泛的研究.文献[1]研究了下列方程组
正解的存在性,得到了当α+β=2*,b≥0,0<λ1≤λ2<μ1,N≥4,方程组存在一个正解.文献[2-4]推广了上述结果.相关论文还可见参文献[5-9].文献[10-15]利用Nehari流形的方法得到了椭圆方程的多解性.本文应用Nehari流形和变分方法证明了当2<p<2*以及p=2*时方程至少存在一个非平凡解.
定义1 (u,v)∈E是问题(1) 的一个解是指任意(ϕ1,ϕ2)∈E满足:
下面给出本文的主要结果.
定理1 假设0<λ1≤λ2<μ1,2<p<2*,条件(A)成立,则问题(1) 在E中存在一个非平凡解.
定理2 假设0<λ1≤λ2<μ1,p=2*,条件(A)成立,则问题(1) 在E中存在一个非平凡解.
定义能量泛函:
其中
类似于文献[10]的证明知道,J∈C1(E,
$\mathbb{R}$ ).考虑Nehari流形:因此z=(u,v)∈Nλ当且仅当
对于(u,v)∈Nλ
于是J(u,v)是有下界的.
定义
对于(u,v)∈Nλ,
把Nλ分成3个部分:
由于2<p≤2*=
$\frac{{2N}}{{N - 2}}$ .于是$N_\lambda ^ + $ =$N_\lambda ^0$ =Ø,Nλ=$N_\lambda ^ - $ .引理1 假设(u0,v0)是J在Nλ里的一个极小值点,且(u,0,v0)∉
$N_\lambda ^0$ ,则J′(u0,v0)=0,即(u0,v0)是J(u,v)的一个临界点.证 此证明类似于文献[14],这里略去证明.
由于(u,v)∈Nλ时,J(u,v)有下界,我们可以定义:
引理2 存在C0=C0(μ1,λ2,p,S0)>0使得ξ->C0.
证 设(u,v)∈
$N_\lambda ^ - $ ,当0<λ1≤λ2<μ1时,由(4) 式知设
$H_0^1$ (Ω)Lp(Ω)(2<p<2*)的最佳嵌入系数为S0,于是由(7) 式有
由(6),(8) 式有
于是由(6),(9) 式有ξ->C0.
对于每个(u,v)∈E,且K(u,v)>0,则(u,v)≠(0,0),当0<λ1≤λ2<μ1时,
记
则有下列引理3,4.
引理3 对于(u,v)∈E,且K(u,v)>0,则存在唯一的t0使得(t0 u,t0 v)∈
$N_\lambda ^ - $ ,且证 设(u,v)∈E,且K(u,v)>0,设
令h′(t)=0,得到t=t0,h(0)=0,t→+∞,h(t)→-∞.当t∈[0,t0),h′(t)>0,当t∈(t0,∞),h′(t)<0,因此h(t)在t=t0达到最大值.由(5) 式得到
于是
引理4 假设0<λ1≤λ2<μ1,则泛函J(u,v)有一个极小值点
$(u_0^ - ,v_0^ - )$ ∈$N_\lambda ^ - $ ,且满足(1) J
$(u_0^ - ,v_0^ - )$ =ξ-,(2)
$(u_0^ - ,v_0^ - )$ 是方程(1) 的一个非平凡解.证 设(un,vn)∈
$N_\lambda ^ - $ 是J(u,v)的一个极小化序列,由(6) 式知道
因此{un,vn}是有界的,存在一个子列(不妨仍记作{un,vn})以及
$(u_0^ - ,v_0^ - )$ ∈E,且在E里,(un,vn)→$(u_0^ - ,v_0^ - )$ ,在Ω里,(un,vn)→$(u_0^ - ,v_0^ - )$ a.e.,于是当n→∞,由(7) 式有,K(un,vn)→K$(u_0^ - ,v_0^ - )$ .于是
$(u_0^ - ,v_0^ - )$ ≠(0,0),K$(u_0^ - ,v_0^ - )$ >0.现在我们证明:在E里(un,vn)$(u_0^ - ,v_0^ - )$ .假如不是,由Fatou引理:由引理3知存在唯一的t0-使得(t0-u0-,t0-v0-)∈Nλ-,又(un,vn)∈Nλ-,J(tun,tvn)在t=1达到极大值,因此当t≥0时,J(tun,tvn)≤J(un,vn).于是由(6),(10) 式有
矛盾,因此在E里(un,vn)→
$(u_0^ - ,v_0^ - )$ .当n→∞,J(un,vn)→J$(u_0^ - ,v_0^ - )$ =ξ-,又$(u_0^ - ,v_0^ - )$ ≠(0,0),由引理1知$(u_0^ - ,v_0^ - )$ 是方程(1) 的一个非平凡解.现在考虑p=2*=
$\frac{{2N}}{{N - 2}}$ 的情形.对于u≠0,设
则有
S的达到函数
且Uε(x)满足下列方程:
因此有
设0≤φ(x)≤1,φ(x)∈C0∞(Ω),定义:当|x|≤r,φ(x)=1;|x|≥2r,φ(x)=0,|∇φ(x)|≤C,B2r(0)⊂Ω,r为常数,设
则利用文献[5]的方法,同样可得uε(x)具有下列性质:
以及
对于z=(u,v)∈E{0},设
因此
定义能量泛函:
其中
定义2 序列{(un,vn)}⊂E叫做一个(PS)c列,假如存在c∈
$\mathbb{R}$ 有引理5 对于c∈
$\mathbb{R}$ ,若序列{zn}={(un,vn)}⊂E是泛函J的一个(PS)c列,则存在{zn}={(un,vn)}⇀z=(u,v)∈E,(u,v)是问题(1) 的一个解,且J′(u,v)=0.证 由(PS)c列的定义,存在c∈
$\mathbb{R}$ ,有则当0<λ1≤λ2<μ1时,
因此{(un,vn)}有界.
{(un,vn)}有界,则在E里存在弱收敛的子列,不妨仍记为{(un,vn)},存在(u,v)∈E,当n→∞,(un,vn)⇀(u,v)在E里,un⇀u以及vn⇀v在L2*(Ω)里. un→u以及vn→v在L2(Ω)里,un→u以及vn→v a.e.,x∈Ω⊂
$\mathbb{R}$ N.因此n→∞,A(un,vn)A(u,v),由(15) 式知道(u,v)是问题(1) 的一个解,且J′(u,v)=0.引理6 对于c∈
$\mathbb{R}$ ,若序列{zn}={(un,vn)}⊂H是泛函J的一个(PS)c列,(un,vn)⇀(u,v),则当时,(un,vn)(u,v).
证 由(PS)c列的定义,存在c∈
$\mathbb{R}$ ,有由引理5,(u,v)是问题(1) 的一个解,且J′(u,v)=0.设un1=un-u,vn1=vn-v于是un1⇀0以及vn1⇀0,由Brezis-lieb引理[7]推出
由文献[9]得到
因此
于是假设
由SF的定义,
${l^{\frac{2}{{{2^*}}}}} \le \frac{{{2^*}l}}{{{S_F}}}$ 时得l=0或者$l \ge {\left( {\frac{{{S_F}}}{{{2^*}}}} \right)^{\frac{N}{2}}}$ .若$l \ge {\left( {\frac{{{S_F}}}{{{2^*}}}} \right)^{\frac{N}{2}}}$ ,则令n→∞
得到J(u,v)<0.
另一方面,由(u,v)是问题(1) 的一个解,J′(u,v)=0.
矛盾.故l=0,(un,vn)→(u,v).
引理7 假设0<λ1≤λ2<μ1,下面结论成立:
1) 存在δ,ρ>0,使得当∀z=(u,v)∈E,‖z‖=ρ,J(u,v)≥δ>0;
2) 存在(ϕ1,ϕ2)∈E使得:
证 1) 当0<λ1≤λ2<μ1时,由(4),(11) 式有
由于2*>2,取‖z‖=ρ足够小,存在δ>0,J(u,v)≥δ>0.
2) 取ϕ=(ϕ1,ϕ2)∈E,ϕ1,ϕ2≥0,(ϕ1,ϕ2)≠(0,0),注意到A(ϕ1,ϕ2)≥0,由(2) 式有
即t→∞,J(tϕ1,tϕ2)→-∞.
下面我们给出定理2的证明.
定理2的证明 设u0=αuε,v0=βuε,α2+β2=1,z0=(u0,v0)∈E.考虑下列函数
由
当t≥0,supg(t)在某个tε>0达到,由于
注意到N≥4,因此由(12),(13),(14) 式及F(α,β)=M得到
当t≥0时,
由引理7及山路引理知在E里存在(PS)c列{(un,vn)}使得
其中
由引理5,存在(u2,v2)∈E,(un,vn)⇀(u2,v2),且J′(u2,v2)=0,于是
由引理6知(un,vn)(u2,v2),又J(u2,v2)=c0>0,因此问题(1) 存在一个非平凡解,证毕.
On Gradient-Type Cooperative Elliptic Systems Involving Subcritical or Critical Sobolev Exponents
-
摘要: 讨论了一类包含次临界和临界Sobolev指数及梯度项的合作椭圆方程组.应用Nehari流形和变分方法,在不同情况下得到了方程至少存在一个解的结论.
-
关键词:
- 临界Sobolev指数 /
- 合作椭圆方程组 /
- Nehari流形 /
- 山路引理 /
- 非平凡解
Abstract: This paper is related to the discussion on a class of gradient-type cooperative elliptic systems involving subcritical or critical Sobolev exponents. With the Nehari manifold and variational methods, it is proved that there exists at least one nontrivial solution of the systems under different cases. -
-
[1] ALVES C O, MORAIS FILHO D C, SOUTO M A S. On Systems of Elliptic Equations Involving Subcritical or Critical Sobolev Exponents [J]. Nonlinear Anal, 2000, 42: 771-787. doi: 10.1016/S0362-546X(99)00121-2 [2] BOUCHEKIF M, NASRI Y. On Elliptic System Involving Critical Sobolev-Hardy Exponents [J]. Mediterr J math, 2008, 5: 237-252. doi: 10.1007/s00009-008-0147-0 [3] BOUCHEKIF M, NASRI Y. On a Elliptic System at Resonance [J]. Annali di Matematica, 2010, 189: 227-240. doi: 10.1007/s10231-009-0106-9 [4] KANG D, PENG S. Existence and Asymptotic Properties of Solutions to Elliptic Systems Involving Multiple Critical Exponents [J]. Science China Mathematics, 2011, 54(2): 243-256. doi: 10.1007/s11425-010-4131-3 [5] doi: https://link.springer.com/article/10.1007/s40840-015-0253-7 HUANG Y, KANG D. On the Singular Elliptic Systems Involving Multiple Critical Sobolev Exponents [J]. Nonlinear Anal, 2010, 74(2): 400-412. [6] doi: http://www.oalib.com/paper/2826402 NASRI Y. An Existence Result for Elliptic Problems with Singular Critical Growth [J]. Electronic Journal of Differential Equations, 2007, 84: 1-6. [7] BREZIS H, LIEB E. A Relation Between Pointwise Convergence of Functions and Convergence of Functionals [J]. Proc AMS, 1983, 88: 486-490. doi: 10.1090/S0002-9939-1983-0699419-3 [8] DE M FILHO D C, SOUTO M A S. Systems of P-Laplacian Equations Involving Homogeneous Nonlinearities with Critical Sobolev Exponent Degrees [J]. Comm Partial Differential Equations, 1999, 24: 1537-1553. doi: 10.1080/03605309908821473 [9] SHEN Y, ZHANG J H. Multiplicity of Positive Solutions for a Semilinear P-Laplacian System with Sobolev Critical Exponent [J]. Nonlinear Anal, 2011, 74(4): 1019-1030. doi: 10.1016/j.na.2010.06.066 [10] BROWN K J, WU T F. A Semilinear Elliptic System Involving Nonlinear Boundary Condition and Sign Changing Weight Function [J]. J Math Anal Appl, 2008, 337: 1326-1336. doi: 10.1016/j.jmaa.2007.04.064 [11] doi: http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDDD201304008.htm ADRIOUCH K, EL HAMIDI A. The Nehari Manifold for System of Nonlinear Elliptic Equations [J]. Nonlinear Anal, 2006, 64(5): 2149-2167. [12] ALVES C O, EL HAMIDI A. Nehari Manifold and Existence of Positive Solutions to a Class of Quasilinear Problems [J]. Nonlinear Anal, 2005, 60: 611-624. doi: 10.1016/j.na.2004.09.039 [13] WU T F. On Semilinear Elliptic Equations Involving Concave-Convex Nonlinearities and Sign-Changing Weight Function [J]. J Math Anal Appl, 2006, 318: 253-270. doi: 10.1016/j.jmaa.2005.05.057 [14] doi: https://link.springer.com/chapter/10.1007/978-1-4615-9828-2_7 BROWN K. The Nehari Manifold for a Semilinear Elliptic Equation Involving a Sublinear Term [J]. Calc Var, 2005, 22: 483-494. [15] BROWN K, WU T F. A Fibering Map Approach to a Semilinear Elliptic Boundary Value Problem [J]. Electron J Differential Equations, 2007, 69: 1-9. -
计量
- 文章访问数: 682
- HTML全文浏览数: 405
- PDF下载数: 62
- 施引文献: 0