留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

硅包银纳米颗粒的制备及其光散射法检测腺苷

上一篇

下一篇

李靖云, 韩国斌, 刘建萍, 等. 硅包银纳米颗粒的制备及其光散射法检测腺苷[J]. 西南大学学报(自然科学版), 2017, 39(9): 113-117. doi: 10.13718/j.cnki.xdzk.2017.09.017
引用本文: 李靖云, 韩国斌, 刘建萍, 等. 硅包银纳米颗粒的制备及其光散射法检测腺苷[J]. 西南大学学报(自然科学版), 2017, 39(9): 113-117. doi: 10.13718/j.cnki.xdzk.2017.09.017
Jing-yun LI, Guo-bin HAN, Jian-ping LIU, et al. Preparation of Ag@SiO2 Nanoparticles and Detection of Adenosine by Light Scattering[J]. Journal of Southwest University Natural Science Edition, 2017, 39(9): 113-117. doi: 10.13718/j.cnki.xdzk.2017.09.017
Citation: Jing-yun LI, Guo-bin HAN, Jian-ping LIU, et al. Preparation of Ag@SiO2 Nanoparticles and Detection of Adenosine by Light Scattering[J]. Journal of Southwest University Natural Science Edition, 2017, 39(9): 113-117. doi: 10.13718/j.cnki.xdzk.2017.09.017

硅包银纳米颗粒的制备及其光散射法检测腺苷

  • 基金项目: 国家自然科学基金项目(21175109)
详细信息
    作者简介:

    李靖云(1986-),女,湖南长沙人,硕士研究生,主要从事发光分析研究 .

    通讯作者: 李原芳,教授
  • 中图分类号: O657

Preparation of Ag@SiO2 Nanoparticles and Detection of Adenosine by Light Scattering

  • 摘要: 将腺苷的核酸适配体设计成两段DNA链,一段修饰在硅包银纳米颗粒上,另一段修饰在磁性颗粒上.利用腺苷与其核酸适配体的特异性结合,通过检测磁性分离后上清液中硅包银纳米颗粒的光散射信号变化,实现了腺苷检测.方法的线性范围为8.0×10-6~5.0×10-4 mol/L,线性相关系数(r)为0.981 8,其他的核苷不干扰测定.
  • 加载中
  • 图 1  AgNPs与Ag@SiO2NPs的吸收图及SEM图

    图 2  磁性分离后上清液的光散射光谱图

    图 3  BSA的浓度对Ag@SiO2NPs的影响

    图 4  不同核苷(A)和不同DNA(B)对体系的响应结果

  • [1] LIU Yue, HUANG Cheng-zhi. Screening Sensitive Nanosensors Via the Investigation of Shape-Dependent Localized Surface Plasmon Resonance of Single Ag Nanoparticles [J]. Nanoscale, 2013, 5(16): 7458-7466. doi: 10.1039/c3nr01952g
    [2] HUANG Jing-tao, YANG Xiao-xi, ZENG Qiao-ling, et al. A Simple Green Route to Prepare Stable Silver Nanoparticles with Pear Juice and a New Selective Colorimetric Method for Detection of Cysteine [J]. Analyst, 2013, 138(18): 5296-5302. doi: 10.1039/c3an00901g
    [3] HU Ping-ping, ZHENG Lin-ling, ZHAN Lei, et al. Metal-Enhanced Fluorescence of Nano-Core-Shell Structure Used for Sensitive Detection of Prion Protein with a Dual-Aptamer Strategy [J]. Anal Chim Acta, 2013, 787: 239-245. doi: 10.1016/j.aca.2013.05.061
    [4] OTARI S V, YADAV H M, THORAT N D, et al. Facile One Pot Synthesis of Core Shell Ag@SiO2 Nanoparticles for Catalytic and Antimicrobial Activity [J]. Materials Letters, 2016, 167: 179-182. doi: 10.1016/j.matlet.2015.12.134
    [5] LI Fan, ZHANG Juan, CAO Xu-ni, et al. Adenosine Detection by Using Gold Nanoparticles and Designed Aptamer Sequences [J]. Analyst, 2009, 134(7): 1355-1360. doi: 10.1039/b900900k
    [6] LIU Shu-hua, HAN Ming-yong. Silica-Coated Metal Nanoparticles [J]. Chem Asian J, 2010, 5(1): 36-45.
    [7] HU Po, HUANG Cheng-zhi, LI Yuan-fang, et al. Magnetic Particle-Based Sandwich Sensor with DNA-Modified Carbon Nanotubes as Recognition Elements for Detection of DNA Hybridization [J]. Anal Chem, 2008, 80(5): 1819-1823. doi: 10.1021/ac702187y
    [8] LI Chun-mei, ZHAN Lei, ZHENG Lin-ling, et al. A Magnetic Nanoparticle-Based Aptasensor for Selective and Sensitive Determination of Lysozyme with Strongly Scattering Silver Nanoparticles [J]. Analyst, 2016, 141(10): 3020-3026. doi: 10.1039/C6AN00489J
  • 加载中
图( 4)
计量
  • 文章访问数:  709
  • HTML全文浏览数:  489
  • PDF下载数:  112
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-10-16
  • 刊出日期:  2017-09-20

硅包银纳米颗粒的制备及其光散射法检测腺苷

    通讯作者: 李原芳,教授
    作者简介: 李靖云(1986-),女,湖南长沙人,硕士研究生,主要从事发光分析研究
  • 1. 发光与实时分析教育部重点实验室/西南大学 化学化工学院,重庆 400715
  • 2. 重庆第48中学,重庆 400700
基金项目:  国家自然科学基金项目(21175109)

摘要: 将腺苷的核酸适配体设计成两段DNA链,一段修饰在硅包银纳米颗粒上,另一段修饰在磁性颗粒上.利用腺苷与其核酸适配体的特异性结合,通过检测磁性分离后上清液中硅包银纳米颗粒的光散射信号变化,实现了腺苷检测.方法的线性范围为8.0×10-6~5.0×10-4 mol/L,线性相关系数(r)为0.981 8,其他的核苷不干扰测定.

English Abstract

  • 银纳米颗粒(AgNPs)具有独特的局域表面等离子体共振(Localized Surface Plasmon Resonance,LSPR)性质[1-2].但是它们在溶液中稳定性较差,同时表面修饰困难.而SiO2具有良好的化学稳定性和光学通透性,并且SiO2比AgNPs更易于进行表面功能化修饰[3-4].因此,本研究利用AgNPs强烈的LSPR特性和SiO2光透性好、易于修饰的特点,制备了Ag@SiO2NPs作为光散射(Light Scattering,LS)探针,并结合磁性颗粒(Magnetite Particles,MPs)在外磁场作用下易于分离的特点,设计了一种分析检测腺苷的新方法.即将腺苷的核酸适配体裁剪为两段DNA单链[5],一段修饰在Ag@SiO2NPs上,另一段修饰在MPs上.当体系中不存在腺苷时,Ag@SiO2NPs与MPs之间不能通过DNA链发生相互结合,在进行磁分离后,Ag@SiO2NPs依然分散在溶液中,此时,上清液表现出较强的LS信号;而当有腺苷存在时,Ag@SiO2NPs与MPs上的DNA链通过腺苷发生相互作用,两者结合,此时再进行磁分离,Ag@SiO2NPs就会与MPs一同从溶液中分离,上清液的LS信号减弱.通过对溶液中Ag@SiO2NPs的LS信号的监测,实现了腺苷的检测.

  • F-4500荧光分光光度计(日本日立公司);UV-3010紫外-可见分光光度计(日本日立公司);S-4800型扫描电子显微镜(SEM,日本日立公司);SZCL-控温磁力搅拌器(巩义市予华仪器有限责任公司).

    DNA1:5'-NH2-TTT TTT TTT TAC CTG GGG GAG TAT-3',DNA2:5'-NH2-TTT TTT TTT TTG CGG AGG AAG GT-3',DNA3:5'-NH2-TTT TTT TTT TCT TAC GGT GGG GCA ATT-3'(上海生物工程技术有限公司);腺苷(Adenosine)、鸟苷(Guanosine)、胸苷(Thymidine)(上海蓝季科技发展有限公司);正硅酸乙酯(TEOS)、三乙基氨基硅烷(APTES)、牛血清白蛋白(BSA)(美国Sigma-Aldrich公司);pH=7.4的Tris-HCl缓冲溶液(50 mmol/L);实验用水均为二次蒸馏水,所用无机试剂均为分析纯.

  • Ag@SiO2NPs的制备[3, 6]:称取9 mg AgNO3溶于50 mL水中,在剧烈搅拌下,加入1 mL 1%的柠檬酸三钠溶液并剧烈搅拌1 h.将制备好的AgNPs于棕色广口瓶中避光储存.测得AgNPs的吸收峰约在428 nm处(图 1),统计其平均粒径约为(60±3) nm(图 1(a)).取一定量的AgNPs加入到100 mL无水乙醇中,搅拌加入2 mL氨水.继续搅拌并向溶液中加入5 mL 10 mmol/L的TEOS,待反应24 h结束后,测得其吸收峰位于462 nm处(图 1). Ag@SiO2NPs平均粒径约为(83±3) nm,硅壳平均厚度约为(11±3) nm(图 1(b)).取一定量Ag@SiO2NPs在搅拌下逐滴加入200 μL APTES,反应30 min结束后洗去多余的APTES,最后将产物干燥. Ag@SiO2NPs的修饰:将上述干燥产物重新超声分散于5 mL水中,再加入500 μL 25%的戊二醛,充分反应1 h后,产物用Tris-HCl洗涤3次,之后加入500 μL DNA2,37 ℃孵育过夜,结束后产物用Tris-HCl洗去未连接的DNA2,之后用BSA在37 ℃孵育30 min,封闭未反应的醛基活性位点,最后用Tris-HCl洗去多余的BSA,定容至5 mL,于4 ℃温度下保存备用.

  • MPs的制备[7-8]:称取2.7 g FeCl3·6H2O和1.8 g FeSO4·7H2O溶于100 mL水中,在80 ℃水浴中搅拌15 min后,加入2.8 g NaOH,待生成Fe3O4后继续搅拌30 min,反应完全后洗去未反应的原料,产物用无水乙醇定容至100 mL.取4 mL MPs于25 mL无水乙醇中,搅拌下先加入1 mL TEOS再加入500 μL氨水,继续反应2 h后洗去多余的原料.重新分散后,在搅拌下加入250 μL APTES,反应30 min后用无水乙醇洗去多余的APTES,最后将MPs干燥并收集固体待用.取10 mg上述固体MPs分散于4 mL水中,然后加入1.6 mL水与400 μL 25%的戊二醛混合液,30 min反应结束后,用水洗去多余的戊二醛,再向MPs溶液中加入400 μL的DNA1,定容至4 mL,密封后以37 ℃孵育过夜;将反应的MPs用Tris-HCl清洗3次,之后用BSA在37 ℃孵育30 min,封闭未反应的醛基活性位点,最后用Tris-HCl洗涤3次,定容至4 mL,4 ℃储存.使用相同的方法,在MPs上修饰DNA3.

  • 在2 mL离心管中依次加入Tris-HCl缓冲液,Ag@SiO2NPs,BSA,MPs,NaCl溶液以及不同量的腺苷,最后定容至500μL.溶液旋涡混匀反应40 min后磁性分离,取上清液在荧光分光光度计上以λem=λex同步扫描激发和发射单色器测定其散射光谱图,激发和发射狭缝宽度均为5.0 nm.

  • 图 2所示,Ag@SiO2NPs表现出较强的LS信号(图 2中线1),当向体系中加入一定浓度的腺苷时,腺苷与分别修饰在Ag@SiO2NPs和MPs上的DNA链相结合,形成核酸适配体与腺苷的复合物.通过磁场作用,Ag@SiO2NPs与MPs一同从溶液中分离,上清液中的LS强度减弱(图 2中线2-4).

  • 在检测过程中发现,Ag@SiO2NPs和MPs之间存在一定的非特异性吸附.因此,通过加入适量的BSA避免非特异性吸附,稳定体系的LS信号.如图 3所示,在无腺苷存在,也不加入BSA的条件下,单独Ag@SiO2NPs的LS强度明显高于磁分离后上清液中Ag@SiO2NPs的强度.但随着BSA的加入,磁分离后上清液中Ag@SiO2NPs的LS强度逐渐与单独Ag@SiO2NPs的接近.而当BSA质量浓度达到0.03 g/L时,强度超过单独Ag@SiO2NPs,说明此时BSA过量.同时,用Ag@SiO2NPs的散射强度(ILSAg0)减去加入不同量BSA后体系散射强度(ILSAg)的差值与Ag@SiO2NPs的散射(ILSAg0)相比的比值关系,即:(ILSAg0-ILSAg)/ILSAg0,也衡量了BSA对体系稳定性的影响(图 3中的嵌入图).实验最终选择加入BSA的质量浓度为0.02 g/L.

  • 对NaCl浓度考察时发现,当溶液中有腺苷存在时,随着NaCl浓度的增大,体系的LS强度随之降低,说明Ag@SiO2NPs随MPs分离的量逐渐增多,并在NaCl的终浓度达到0.3 mol/L时,LS强度降低达到最大值.因此,实验选择NaCl浓度为0.3 mol/L.

  • 在考察时间对反应体系的影响时发现,当反应时间达到40 min时,体系的散射强度趋于稳定.因此,实验选择40 min作为体系的反应时间.

  • 在优化条件下,考察了体系选择性.从图 4可以发现,用不同核苷(图 4(a))进行实验,体系并不会产生有意义的LS信号降低.同样,如果选用非腺苷的核酸适配体的DNA3(图 4(b))时,即便体系中有腺苷存在,LS信号响应值依然很低.实验证实此分析方法对检测腺苷具有较好的选择性.

  • 在优化条件下,Ag@SiO2NPs在475 nm左右的散射强度的降低值(ΔILS)与腺苷的浓度(c)在5.0×10-4~8.0×10-6mol/L之间有较好的线性关系:ΔILS=666.50+505.18logc,线性相关系数r=0.981 8.

  • 本研究制备出以AgNPs为核、SiO2为壳的复合纳米颗粒.这种纳米颗粒不仅克服了AgNPs易聚集,不易修饰的缺点,还保持了AgNPs所固有的强散射信号.运用制备的Ag@SiO2NPs作为散射信号探针,结合MPs易于分离的优势,设计了基于磁性分离检测腺苷的新方法.对比AgNPs,Ag@SiO2NPs作为散射探针具有更好的稳定性和易于表面功能化的优点,有望在分析检测、细胞成像等领域得到更广泛的应用.

参考文献 (8)

目录

/

返回文章
返回