-
设M为n维完备非紧黎曼流形,本文考虑微分不等式
的Liouville定理,其中1<p≤2,σ>p-1,Δpu=div(|▽u|p-2▽u)为p-Laplace算子.文献[1]中证明了
${{\mathbb{R}}^{n}}$ (n>2) 中p=2时(1) 式没有非平凡非负解当且仅当$1<\sigma <\frac{n}{n-2}$ ,通过选择适当的试验函数,文献[2-3]中导出了${{\mathbb{R}}^{n}}$ 中更为一般的微分不等式的Liouville定理.若要将文献[2-3]中的方法推广到黎曼流形上,需要Laplace比较定理,从而需要Ricci曲率满足适当条件,文献[4]中改进了文献[2-3]中的方法,只需在体积增长的条件下就可以得到流形上相应的Liouville定理.文献[5]中改进了文献[4]中的结果,得到如下定理.定理 1 设M为n维完备非紧黎曼流形,r>0充分大,设以某定点为球心,r为半径的测地球Br的体积满足
其中C是常数,则(1) 式在p=2时没有非平凡非负解.
文献[5]中构造了例子说明(2) 式中的常数
$\frac{2\sigma }{\sigma -1}$ ,$\frac{1}{\sigma -1}$ 是最优的.受文献[6-7]中的启发,文献[8]中证明(2) 式用了更弱的条件$\mathop {\lim {\rm{inf}}}\limits_{t \searrow 0} {t^{\frac{\sigma }{{\sigma - 1}}}}\int_1^\infty {\frac{{\mu \left( {{B_r}} \right)}}{{{r^{\frac{{3\sigma - 1}}{{\sigma - 1}} + t}}}}} {\rm{d}}r < \infty $ 来替代,此时定理1仍然成立.本文将考虑微分不等式(1),其中1<p≤2,σ>p-1,为此我们用Wlocp(M)表示满足f∈Llocp(M)以及弱梯度▽f∈Llocp(M)的函数f组成的空间,我们用Wcp(M)表示Wlocp(M)的带紧致支撑的函数组成的子空间,容易看出p-Laplace算子在▽f=0的点退化,受文献[9-10]中方法的启发,我们考虑如下的不等式
其中
$\varepsilon >0,A=\sqrt{{{\left| \nabla u \right|}^{2}}+\varepsilon }$ .容易看出(3) 式的左边是严格椭圆的.定义 1 对任意的ε>0,M上的非负函数u称为(1) 式的弱解,如果u∈Wlocp(M),且对任意的非负函数ψ∈Wcp(M),如下不等式成立
定义 2 我们称(1) 式在弱意义下没有非平凡非负正解,是指对任意的ε>0,(3) 式没有非平凡非负弱解.
下面叙述这篇文章的主要结果.
定理 2 设(M,g)为n维完备无边非紧黎曼流形,假设
则当1<p≤2,σ>p-1时,(1) 式在弱意义下没有非平凡非负正解.
为方便,本文中C表示仅仅依赖于p,σ的正常数,前后不一定相等.
A Liouville Theorem of the p-Laplace Operator on Riemannian Manifolds
-
摘要: 主要研究非紧黎曼流形上微分不等式Δpu+uσ≤0的Liouville定理,其中1<p ≤ 2,σ > p-1,证明了当积分条件 $\mathop {\lim {\rm{inf}}}\limits_{t \searrow 0} {t^{\frac{\sigma }{{\sigma - p + 1}}}}\int_1^\infty {\frac{{\mu \left( {{B_r}} \right)}}{{{r^{\frac{{\sigma \left( {p + 1} \right) - \left( {p - 1} \right)}}{{\sigma - p + 1}} + t}}}}} {\rm{d}}r < \infty $ 成立时上面不等式不存在弱意义下的非平凡的非负解.
-
关键词:
- 黎曼流形 /
- 体积增长 /
- Liouville定理 /
- 微分不等式
Abstract: In this paper we study the Liouville theorem of the differential inequality Δpu+uσ ≤ 0 on complete noncompact Riemannian manifolds, where 1 < p ≤ 2, σ > p-1. We prove that the above inequality does not exist nontrivial nonnegative solutions in the weak sense if the integral condition $\mathop {\lim {\rm{inf}}}\limits_{t \searrow 0} {t^{\frac{\sigma }{{\sigma - p + 1}}}}\int_1^\infty {\frac{{\mu \left( {{B_r}} \right)}}{{{r^{\frac{{\sigma \left( {p + 1} \right) - \left( {p - 1} \right)}}{{\sigma - p + 1}} + t}}}}} {\rm{d}}r \lt \infty $ satisfies.-
Key words:
- Riemannian manifold /
- volume growth /
- Liouville theorem /
- differential inequality .
-
[1] GIDSA B, SPRUCK J. Global and Local Behavior of Positive Solutions of Nonlinear Elliptic Equations[J]. Communications on Pure and Applied Mathematics, 1981, 34(4):525-598. doi: 10.1002/(ISSN)1097-0312 [2] CARISTI G, MITIDIERI E. Some Liouville Theorems for Quasilinear Elliptic Inequalities[J]. Doklady Mathematics, 2009, 79(1):118-124. doi: 10.1134/S1064562409010360 [3] CARISTI G, AMBROSIO L. D, MITIDIERI E. Liouville Theorems for Some Nonlinear Inequalities[J]. Proceedings of the Steklov Institute of Mathematics, 2008, 260(1):90-111. doi: 10.1134/S0081543808010070 [4] doi: https://link.springer.com/content/pdf/10.1007%2F978-1-4419-1343-2_8.pdf GRIGOR'YAN A, KONDRATIEV V. A. On the Existence of Positive Solutions of Semilinear Elliptic Inequalities on Riemannian Manifolds[J]. New York:Springer, 2010. [5] GRIGOR'YAN A, SUN Y. On Nonnegative Solutions of the Inequality Δu+uσ ≤ 0 on Riemnannian Manifolds[J]. Communications on Pure and Applied Mathematics, 2014, 67(8):1336-1352. doi: 10.1002/cpa.v67.8 [6] GRIGOR'YAN A A. On the Existence of Positive Fundamental Solution of the Laplace Equation on Riemannian Manifolds (in Russian)[J]. Engl. transl.:Mathematics of the USSR, 1987, 56(2):349-358. doi: 10.1070/SM1987v056n02ABEH003040 [7] VAROPOULOS N. The Poisson Kernel on Positively Curved Manifolds[J]. Journal of Functional Analysis, 1981, 44(3):359-380. doi: 10.1016/0022-1236(81)90015-X [8] ZHANG H C. A Note on Liouville Type Theorem of Elliptic Inequality Δu+uσ ≤ 0 on Riemannian Manifolds[J]. Potential Analysis, 2015, 43(2):269-276. doi: 10.1007/s11118-015-9470-9 [9] doi: https://link.springer.com/article/10.1007/s00526-006-0050-0 HEIN B. A Homotopy Approach to Solving the Inverse Mean Curvature Flow[J]. Calculus of Variations and Partial Differential Equations, 2007, 28(2):249-273. [10] doi: https://link.springer.com/chapter/10.1007/978-3-319-31721-2_5 KOTSCHWAR B, NI L. Local Gradient Estimates of p-harmonic Functions, 1/H-Flow, and an Entropy Formula[J]. Annales Scientifiques de l'Ecole Normale Suprieure, 2009, 42(4):1-36. [11] GILBARG D, TRUDINGER N. S. Elliptic Partial Differential Equations of Second Order[M]. New York:Springer, 1998.
计量
- 文章访问数: 1041
- HTML全文浏览数: 632
- PDF下载数: 36
- 施引文献: 0