-
猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)主要导致母猪出现繁殖障碍和生长保育猪出现呼吸系统障碍疾病[1]. PRRSVs 20世纪80年代在美国首次出现,1991年Wensvoort等[2]在欧洲首次分离到该病毒LV(Lentivirus)疾毒株,此后PRRSV全球流行. 1996年我国兽医学家郭宝清等[3]在流产的猪胎中首次分离到PRRSV病毒CH-1a,证明了中国大陆存在猪繁殖与呼吸综合征病毒感染. 2007年,Tian等[4]报道了导致2006年我国爆发高致病性蓝耳病,以引起成年猪高热,耳朵发蓝,严重呼吸障碍,高死亡率为特征的疾病,对我国养猪业造成严重损失的HP-PRRSV类型毒株JXA1,此后我国分离到多株该类型毒株如HuN4[5-6].近年来,由于猪繁殖与呼吸综合征病毒具有广泛持续的遗传变异多样性特征,特别是高致病性毒株新亚型和流行新毒株的不断出现,给规模化猪场猪繁殖与呼吸综合征的防治带来了严重挑战,导致该病广泛流行给养猪业造成严重危害[7-9].目前主要靠疫苗免疫如HP-PRRSV毒株的JXA1,HUN4,TJ和经典的CH-1a疫苗对该病进行防治.但是大量研究表明,现有的疫苗尚不能完全有效地预防所有PRRSV流行毒株.尤其是近年来,疫苗免疫压力和猪场种猪的引种导致我国出现PRRSV新亚型,如近年来在我国出现的NADC30 like毒株,所以开展该病毒遗传进化研究,对猪场采取何种疫苗进行蓝耳病的防治具有重要意义.赵津等[10]研究了猪病毒病PCV2,PEDV,TGEV,GAR的复合PCR方法建立及应用;陈燕君等[11]研究了猪诺如病毒巢式RT-PCR检测方法的建立与应用;Chen等[12]指出猪繁殖与呼吸综合征病毒结构基因ORF5对该病毒分子流行病学、致病机理、疫苗研制和鉴别诊断具有重要的意义.因此,本研究拟通过采集2015-2016年本地区疑似感染PRRSV(病料、血清等)的猪群,用RT-PCR扩增其ORF5基因,并进行克隆、序列测定和遗传进化分析,了解2015-2016川南感染PRRSV猪群中ORF5基因的遗传变异情况,对该地区疫苗的选用及PRRSV防控提供依据.
Genetic Evolution of the ORF5 Gene of (PRRSV) in Sichuan, China from 2015 to 2016
-
摘要: 猪繁殖与呼吸综合征病毒(PRRSV)主要引起母猪繁殖障碍与生长猪呼吸障碍性疾病,给养猪业造成严重损失.为了解川南地区2015-2016年PRRSV遗传变异情况,该研究收集了85份疑似感染PRRSV组织样品,通过RT-PCR扩增ORF5基因,对其进行克隆、序列测定和所测序列遗传进化分析.获得15个ORF5序列,其遗传距离与序列相似性为0.0~0.25和81.1%~100%.与VR2332,JXA1,NADC30和JX1411核酸序列相似性分别为83.4%~89.1%,83.4%~99.3%,81.9%~95.7%和81.4%~92.9%.进化树分析显示,15个ORF5序列形成3个亚群,8个ORF5序列与JXA1形成subcluster Ⅰ,5个与NADC30 like形成subcluster Ⅱ,2个与ZJ1503 like毒株形成subcluster Ⅲ.研究结果表明,该地区PRRSVs毒株基因型日趋复杂,建议通过合理疫苗免疫,减少通过重组导致出现复杂的PRRSV基因型,对PRRSV的防控具有重要意义.
-
关键词:
- 猪繁殖与呼吸综合征病毒 /
- ORF5基因 /
- NADC30 /
- 遗传进化
Abstract: Porcine reproductive and respiratory syndrome (PRRS) is considered to be the most widespread viral disease in industrial swine production. It leads to reproductive failure in pregnant sows and respiratory distress in young pigs. In order to research the genetic variation of porcine reproductive and respiratory syndrome virus (PRRSV) in Sichuan, China, eighty five clinical samples were collected and detected in 2015-2016. A total of fifteen ORF5 gene sequences were identified. Their pairwise-genetic distance and sequence homology were 0.00-0.25 and 81.1%-100%, respectively. These strains had 83.4%-89.1% identity with VR2332 at the nucleotide level and 82.1%-88.1% with amino acid level. What's more, those field sequences showed 83.4%-99.3% of nucleotide and 83.1%-99.5% of amino acid identity to JXA1 strain. In addition, those ORF5 gene sequences showed 81.9%-95.7% of nucleotide and 80.6%-94.5% of amino acid identity to the NADC30 strain. Moreover, those ORF5 gene sequences showed 81.4%-92.9% of nucleotide and 81.6%-92.5% of amino acid identity to the novel type PRRSV including JX1411 strain. Phylogenetic analysis revealed that the fifteen ORF5 gene sequences formed three subclusters. The first eight ORF5 genes and JXA1 belonged to subcluster Ⅰ, In addition, five of them were subclustered with NADC30 strain into subcluster Ⅱ, and the last two ORF5 gene sequences were subclustered with ZJ1503like to form a novel subcluster Ⅲ. The above results suggest that the genotypes of the PRRSV in this region are becoming increasingly complex. It is recommended that proper immune vaccination be used to reduce the complicated genotypes of the wild strains. That will be of great significance for the control and prevention of PRRSV. -
表 1 本研究中所用到的ORF5基因序列详细信息
毒株名称 国家/年份 登录名 Lelystad virus Netherlands/1993 M96262 VR2332 US/1995 U87392 CH-1a China/1996 AY032626 BJ-4 China/2002 AF331831.1 EuroPRRSV USA/2004 AY366525 HB-1(sh)/2002 China/2004 AY150312 HB-2(sh)/2002 China/2004 AY262352. RespPRRS MLV USA/2005 AF066183 JXA1 China/2006 EF112445 Henan-1 China/2007 EF398053 SY0608 China/2007 EU144079.1 HUN4 China/2007 EF635006.1 GD2007 China/2007 EU880433.2 MN184C USA/2008 EF488739 BJ China/2008 EU825723.1 TJ China/2008 EU860248.1 BJ0706 China/2009 FJ800759 SCwhn09CD China/2009 JN836553 JX1411 China/2014 KT961391 NADC30 USA/2012 JN654459 FJ1502 China/2015 KT961418 FJ1405 China/2015 KM453701 ZJ1503 China/2015 KT961381 ZJ1407 China/2015 KT961383 GD1404 China/2015 KT961415 CHsx1401 China/2015 KP861625.1 HLJ58 China/2015 KR706344 JL580 China/2015 KR706343 表 2 15个ORF5之间遗传距离及序列相似性
A B SC1501 SC1502 SC1503 SC1504 SC1505 SC1506 SC1507 SC1508 SC1509 SC1510 SC1511 SC1601 SC1602 SC1603 SC1604 SC1501 =C 98.3D(98.0)E 85.7(85.6) 85.2(85.6) 85.4(85.6) 94.4(94.0) 82.9(82.6) 95.5(95.5) 82.9(84.6) 98.8(99.0) 98.7(98.5) 85.4(85.6) 82.9(82.6) 99.7(99.0) 98.5(98.5) SC1502 0.017 - 85.6(85.1) 85.1(85.1) 85.2(85.1) 94.5(94.0) 83.3(82.6) 95.4(95.0) 82.9(84.1) 98.5(97.0) 98.3(96.5) 85.2(85.1) 83.3(82.6) 98(97.0) 99.8(99.5) SC1503 0.175 0.177 - 99.5(99.0) 99.7(99.5) 83.9(85.1) 82.8(81.6) 84.7(86.1) 92.4(93.5) 85.9(85.6) 85.7(85.6) 99.7(99.5) 82.8(81.6) 85.7(85.6) 85.4(84.6) SC1504 0.182 0.184 0.005 - 99.8(99.5) 83.7(85.6) 82.6(81.6) 84.2(86.1) 92.9(93.5) 85.4(85.6) 85.2(85.6) 99.8(99.5) 82.6(81.6) 85.2(85.6) 84.9(84.6) SC1505 0.179 0.182 0.003 0.002 - 83.9(85.6) 82.8(81.6) 84.4(86.1) 92.7(93.5) 85.6(85.6) 85.4(85.6) 100(100) 82.8(81.6) 85.4(85.6) 85.1(84.6) SC1506 0.061 0.059 0.203 0.206 0.203 - 81.1(81.6) 98.8(98.5) 81.4(84.1) 94.5(93.5) 94.4(93.0) 83.9(85.6) 81.1(81.6) 94.2(93.5) 94.4(93.5) SC1507 0.219 0.213 0.221 0.224 0.221 0.25 - 82.1(82.1) 81.4(80.6) 83.1(82.1) 83.6(82.6) 82.8(81.6) 100(100) 82.6(81.6) 83.1(82.1) SC1508 0.047 0.049 0.19 0.197 0.195 0.012 0.232 - 82.3(85.1) 95.7(95.0) 95.5(94.5) 84.4(86.1) 82.1(82.1) 95.4(95.0) 95.2(94.5) SC1509 0.22 0.22 0.084 0.078 0.08 0.244 0.247 0.229 - 83.1(84.6) 83.6(85.1) 92.7(93.5) 81.4(80.6) 82.6(83.6) 82.8(83.6) SC1510 0.012 0.015 0.172 0.179 0.177 0.059 0.216 0.046 0.218 - 99.2(98.5) 85.6(85.6) 83.1(82.1) 98.5(98.0) 98.7(97.5) SC1511 0.013 0.017 0.175 0.182 0.18 0.061 0.209 0.048 0.209 0.008 - 85.4(85.6) 83.6(82.6) 98.3(97.5) 98.5(97.0) SC1601 0.179 0.182 0.003 0.002 0 0.203 0.221 0.195 0.08 0.177 0.18 - 82.8(81.6) 85.4(85.6) 85.1(84.6) SC1602 0.219 0.213 0.221 0.224 0.221 0.25 0 0.232 0.247 0.216 0.209 0.221 - 82.6(81.6) 83.1(82.1) SC1603 0.003 0.02 0.175 0.182 0.18 0.062 0.224 0.049 0.226 0.015 0.017 0.18 0.224 - 98.2(97.5) SC1604 0.015 0.002 0.179 0.187 0.184 0.061 0.216 0.051 0.223 0.013 0.015 0.184 0.216 0.019 - 注:A.遗传距离,B.序列同源性,C.无,D.核酸序列相似性,E.氨基酸序列相似性. 表 3 15个ORF5基因序列与R2332,CH-1a,JXA1,NADC30,HLJ58,JX1411及Lelystad Virus核酸序列相似性和氨基酸序列相似性比较结果
% VR2332 CH-1a JXA1 NADC30 HLJ58 JX1411 Lelystad Virus SC1501 88.9(88.1) 94.5(88.1) 99.2(99.5) 85.6(85.6) 84.6(83.6) 83.7(83.6) 63.5(58.4) SC1502 88.6(87.1) 94.9(87.1) 99.2(98.5) 85.4(85.1) 84.2(83.1) 83.7(83.6) 64.1(58.4) SC1503 85.4(84.1) 86.4(84.1) 86.2(86.1) 95.2(94.0) 93.7(92.5) 82.9(82.1) 62.4(54.8) SC1504 85.2(84.1) 86.2(84.1) 85.7(86.1) 95.7(94.0) 93.9(92.5) 82.8(82.1) 62.1(54.8) SC1505 85.2(84.1) 86.2(84.1) 85.7(86.1) 95.7(94.0) 93.9(92.5) 82.8(82.1) 62.1(54.8) SC1506 86.6(85.6) 92.0(85.6) 94.9(94.5) 83.9(85.1) 82.8(83.1) 81.9(83.1) 63.6(56.3) SC1507 83.4(82.1) 85.6(82.1) 83.4(83.1) 84.1(84.1) 81.9(80.6) 92.9(92.5) 62.3(53.8) SC1508 87.2(86.6) 93.2(86.6) 96.0(96.0) 84.7(86.1) 83.6(84.1) 82.9(84.1) 63.8(57.4) SC1509 85.2(83.6) 84.7(83.6) 83.4(85.1) 93.0(94.5) 91.5(84.1) 81.4(81.6) 64.0(54.8) SC1510 88.6(87.1) 94.7(87.1) 99.3(98.5) 85.7(86.1) 84.6(92.0) 83.7(83.1) 63.5(57.4) SC1511 89.1(87.6) 94.9(87.6) 99.2(98.0) 85.9(86.1) 85.1(84.1) 83.9(82.6) 64.3(57.9) SC1601 85.4(84.1) 86.4(84.1) 85.9(86.1) 95.5(94.0) 93.7(92.0) 82.9(82.1) 62.1(54.8) SC1602 83.4(82.1) 85.6(82.1) 83.4(83.1) 84.1(84.1) 93.7(80.6) 92.9(92.5) 62.3(53.8) SC1603 88.6(87.6) 94.2(87.6) 98.8(98.5) 85.2(84.6) 93.7(82.6) 83.4(82.6) 63.6(58.4) SC1604 88.7(87.6) 94.7(87.6) 99.0(98.0) 85.2(84.6) 93.7(82.6) 83.6(83.1) 64.1(58.4) -
[1] doi: https://www.sciencedirect.com/science/article/pii/S0378113514004830 HAN M, YOO D. Engineering the PRRS Virus Genome: Updates and Perspectives [J]. Vet Microbiol, 2014, 174(3/4): 279-295. [2] WENSVOORT G, TERPSTRA C, POL J M, et al. Mystery Swine Disease in The Netherlands: the Isolation of Lelystad Virus [J]. The Veterinary Quarterly, 1991, 13(3): 121-130. doi: 10.1080/01652176.1991.9694296 [3] 郭宝清, 陈章水, 刘文兴, 等.从疑似PRRS流产胎儿分离PRRSV的研究[J].中国预防兽医学报, 1996(2): 1-5. doi: http://www.cqvip.com/Main/Detail.aspx?id=2008036 [4] TIAN K, YU X, ZHAO T, et al. Emergence of Fatal PRRSV Variants: Unparalleled Outbreaks of Atypical PRRS in China and Molecular Dissection of the Unique Hallmark [J]. PloS One, 2007, 2(6): e526. doi: 10.1371/journal.pone.0000526 [5] ZHOU L, ZHANG J, ZENG J, et al. The 30-Amino-Acid Deletion in the Nsp2 of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Emerging in China is Not Related to Its Virulence [J]. Journal of Virology, 2009, 83(10): 5156-5167. doi: 10.1128/JVI.02678-08 [6] doi: https://rd.springer.com/content/pdf/10.1007/s12560-012-9083-z.pdf ZHOU Y, YANG X, WANG H N, et al. Molecular Characterization of a Complete Genome and 12 Nsp2 Genes of PRRSV of Southwestern China [J]. Food & Environmental Virology, 2012, 4: 102-114. [7] doi: http://europepmc.org/abstract/MED/27292168 LI C, ZHUANG J, WANG J, et al. Outbreak Investigation of NADC30-Like PRRSV in South-East China [J]. Transboundary and Emerging Diseases, 2016, 63(5): 474-479. [8] ZHAO K, YE C, CHANG X B, et al. Importation and Recombination Are Responsible for the Latest Emergence of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus in China [J]. Journal of Virology, 2015, 89(20): 10712-10716. doi: 10.1128/JVI.01446-15 [9] ZHANG Q, XU X, YOU S, et al. Emerging of Two New Subgenotypes of Porcine Reproductive and Respiratory Syndrome Viruses in Southeast China [J]. Microbial Pathogenesis, 2016, 97: 27-33. doi: 10.1016/j.micpath.2016.05.011 [10] 赵津, 禹泽忠, 冯刚, 等.猪病毒病PCV2, PEDV, TGEV, GAR的复合PCR方法建立及应用[J].西南农业学报, 2016, 29(4): 982-987. doi: http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xnyx201604045&dbname=CJFD&dbcode=CJFQ [11] 陈燕君, 唐玉新, 周信荣, 等.猪诺如病毒式RT-PCR检测方法的建立与应用[J].江西农业大学学报, 2016, 38(2): 338-346. doi: http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxnd201602018&dbname=CJFD&dbcode=CJFQ [12] doi: http://europepmc.org/abstract/MED/26961593 CHEN N, TRIBLE B R, KERRIGAN M A, et al. Rowland RR ORF5 of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is a Target of Diversifying Selection as Infection Progresses from Acute Infection to Virus Rebound [J]. Infection Genetics & Evolution Journal of Molecular Epidemiology & Evolutionary Genetics in Infectious Diseases, 2016, 40: 167-175. [13] YIN G, GAO L, SHU X, et al. Genetic Diversity of the ORF5 Gene of Porcine Reproductive and Respiratory Syndrome Virus Isolates in Southwest China from 2007 to 2009 [J]. Plos One, 2012, 7(3): e33756. doi: 10.1371/journal.pone.0033756 [14] BROCKMEIER S L, LOVING C L, VORWALD A C, et al. Genomic Sequence and Virulence Comparison of four Type 2 Porcine Reproductive and Respiratory Syndrome Virus Strains [J]. Virus Res, 2012, 169(1): 212-221. doi: 10.1016/j.virusres.2012.07.030