-
本文考虑如下非局部问题弱解的存在性和多重性:
其中
$ \mathit{\Omega } \subset {{\mathbb{R}}^N}\left( {N = 1, 2, 3} \right) $ 是光滑有界域,常数a,b>0,参数λ>0,f(x,u)是连续函数.当b≤0时关于问题(1)的成果相当广泛,如文献[1]及其参考文献.自文献[2]利用度理论和不动点定理获得两点边值问题当λ→λ1-(这里λ1是问题-u"=λu的第一特征值)时至少3个解的存在性后,关于近共振的结果被推广到各种方程和系统中,如文献[3-4]及其引用文献.另外,对问题(1),当满足
时,文献[5]通过变分方法获得至少存在1个非平凡非正解和1个非平凡非负解,基于文献[5],文献[6]给fμ(x)以适当假设,得出f(x,u)=fμ(x)|u|p-2u(1<p<2,N=3)时至少存在2个正解;文献[7]用山路引理得出f(x,u)=μup(1<p<2,N≥3)时2个解的存在性;文献[8]通过扰动等方法获得f(x,u)=μu-γ(0<γ<1,N=3)时至少存在2个正解.
受文献[5-8]启发,并考虑到形如问题(1)的近共振问题还没有相关结果,本文将用Ekeland>变分原理和山路引理在适当条件下证明问题(1)多重解的存在性.记λ1是问题
的第一特征值,对应的特征函数为φ1.同时,设连续函数f(x,u)满足如下条件:
(F1) 0≤f(x,t)<bλ|t|3+
$a{\left( {\frac{\lambda }{{\left| \mathit{\Omega } \right|}}} \right)^{\frac{1}{2}}}\left| t \right| $ 对$ \forall \left( {x, t} \right) \in \mathit{\bar \Omega } \times \left( {{\mathbb{R}\backslash }\left\{ 0 \right\}} \right) $ 一致成立;(F2)
$ \mathop {\lim }\limits_{t \to \infty } \frac{{f\left( {x, t} \right)}}{{b{t^3}}} = 0 $ 对$ \forall \left( {x, t} \right) \in \mathit{\bar \Omega } \times {\mathbb{R}} $ 一致成立;(F3)
$ \mathop {\lim }\limits_{t \to \infty } \left( { - \frac{a}{2}\sqrt {{\lambda _1}} {t^2} + \int_\mathit{\Omega } {F\left( {x, t{\varphi _1}} \right)} {\rm{d}}x} \right) \to - \infty $ ,对x∈Ω一致成立,$ F\left( {x, t} \right) = \int_0^t {f\left( {x, s} \right)} {\rm{d}}s $ .本文的主要结论是:
定理1 若条件(F1)成立,则0<λ<λ1时,问题(1)至少存在1个非平凡弱解.
定理2 若满足条件(F2)和(F3),则0<λ<λ1且λ接近λ1时,问题(1)至少有3个弱解.
Existence of Multiple Solutions for a Class of Nonlocal Near Resonance Problems
-
摘要: 通过变分方法在光滑有界域 \lt i \gt Ω \lt /i \gt 上研究由常数 \lt i \gt a \lt /i \gt , \lt i \gt b \lt /i \gt >0,参数 \lt i \gt λ \lt /i \gt >0及连续函数 \lt i \gt f \lt /i \gt ( \lt i \gt x \lt /i \gt , \lt i \gt u \lt /i \gt )共同决定的非局部问题: $ \left\{ {\begin{array}{*{20}{c}} \begin{array}{l} - \left( {a - b\int_\mathit{\Omega } {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)\Delta u + b\lambda {u^3} = f\left( {x,u} \right)\\ u = 0 \end{array}&\begin{array}{l} x \in \mathit{\Omega }\\ x \in \partial \mathit{\Omega } \end{array} \end{array}} \right. $ 利用Ekeland变分原理和山路引理得到该问题近共振情形多重解的存在性.
-
关键词:
- 非局部问题 /
- 近共振 /
- 变分方法 /
- Ekeland变分原理 /
- 多重解
Abstract: In this paper, we use the variational method to study the following nonlocal problems in the smooth bounded domain \lt i \gt Ω \lt /i \gt , which are determined by the constant \lt i \gt a \lt /i \gt , \lt i \gt b \lt /i \gt \gt 0, the parameter \lt i \gt λ \lt /i \gt \gt 0 and the continuous function \lt i \gt f \lt /i \gt ( \lt i \gt x \lt /i \gt , \lt i \gt u \lt /i \gt ): $ \left\{ {\begin{array}{*{20}{c}} \begin{array}{l} - \left( {a - b\int_\mathit{\Omega } {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)\Delta u + b\lambda {u^3} = f\left( {x,u} \right)\\ u = 0 \end{array}&\begin{array}{l} x \in \mathit{\Omega }\\ x \in \partial \mathit{\Omega } \end{array} \end{array}} \right. $ The existence and multiple solutions are obtained for this class of problems with near resonance by the Ekeland variational principle and a mountain pass lemma.-
Key words:
- nonlocal problem /
- near resonance /
- variational method /
- Ekeland's variational principle /
- multiple solution .
-
[1] 赵荣胜, 唐春雷.一类Kirchhoff型方程解的多重性[J].西南大学学报(自然科学版), 2015, 37(2): 60-63. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=2015-02-060&flag=1 [2] doi: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.desklight-be9eb343-b21c-4533-b373-31664a55c431 MAWHIN J, SCHMITT K. Nonlinear Eigenvalue Problems with the Parameter Near Resonance[J]. Annales Polonici Mathematici, 1990, 51(1): 172-189. [3] doi: http://link.springer.com/article/10.1186/s13661-014-0184-5 AN Y C, LU X, SUO H M. Existence and Multiplicity Results for a Degenerate Quasi-Linear Elliptic System Near Resonance[J]. Boundary Value Problems, 2014, 184(1): 1-10. [4] doi: https://www.hindawi.com/journals/amp/2017/2925065 AN Y C, SUO H M. The Neumann Problem for a Degenerate Elliptic System Near Resonance[J]. Advances in Mathematical Physics, 2017, 2017(4): 1-10. [5] YIN G S, LIU J S. Existence and Multiplicity of Nontrivial Solutions for a Nonlocal Problem[J]. Boundary Value Problems, 2015, 2015(1): 1-7. doi: 10.1186/s13661-014-0259-3 [6] LEI C Y, LIAO J F, SUO H M. Multiple Positive Solutions for a Class of Nonlocal Problems Involving a Sign-Changing Potential[J]. Electronic Journal of Differential Equations, 2017, 2017(9): 1-8. [7] 李红英.一类非局部问题的多解性[J].西南师范大学学报(自然科学版), 2017, 42(6): 24-27. doi: http://www.cqvip.com/QK/93403X/201706/672579488.html [8] doi: http://www.emis.ams.org/journals/EJDE/Volumes/2017/85/abstr.html LEI C Y, CHU C M, SUO H M. Positive Solutions for a Nonlocal Problem with Singularity[J]. Electronic Journal of Differential Equations, 2017, 2017(85): 1-9. [9] PERERA K, ZHANG Z T. Nontrivial Solutions of Kirchhoff-Type Problems via the Yang Index[J]. Journal of Differential Equations, 2006, 221(1): 246-255. doi: 10.1016/j.jde.2005.03.006 [10] 钟承奎, 范先令, 陈文山原.非线性泛函分析引论[M].兰州:兰州大学出版社, 189-193. [11] PUCCI P, SERRIN J. A Mountain Pass Theorem[J]. Journal of Differential Equations, 1985, 60(1): 142-149. doi: 10.1016/0022-0396(85)90125-1
计量
- 文章访问数: 796
- HTML全文浏览数: 523
- PDF下载数: 25
- 施引文献: 0