-
禽大肠杆菌病(Avian colibacillosis)是由禽致病性大肠杆菌引起的一种细菌性传染病[1],是危害我国养禽业最重要的细菌性传染病之一[2-3].急性病例引起败血症,亚急性病例表现为心包炎、肝周炎、腹膜炎、气囊炎、肠炎和肉芽肿等症状[1].如果控制不当,会导致很高的发病率和死亡率,给养禽业造成极大的经济损失.对于该病的防控通常采取在饲料或饮水中添加抗菌药物,但抗菌药物的广泛使用使得耐药菌株不断出现,导致该病的防控更加困难.这些耐药菌株随着食物链进入人体,对人的健康造成潜在威胁[4].在人体抵抗力下降,由此类菌株引起发病时容易导致治疗失败.近年来的研究发现,超广谱β-内酰胺酶基因是一类在肠杆菌科细菌中广泛存在的基因群,这类基因都能够产生超广谱β-内酰胺酶(Extended spectrum beta-lactamases,ESBLs),ESBLs能够水解β-内酰胺类抗生素,特别是头孢菌素,是肠杆菌科细菌对β-内酰胺类药物耐药的主要原因[5].本研究分离了某蛋鸡场部分患大肠杆菌病青年蛋鸡的病原,并对病原进行了鉴定,测定了其对多种抗菌药物的敏感性,检测了ESBL基因,为了解该蛋鸡场致病性大肠杆菌的特征积累了数据.
Isolation, Identification and Antimicrobial Resistance Analysis of Chicken-Associated Pathogenic Escherichia coli
-
摘要: 分离鉴定某蛋鸡养殖场病鸡的病原并对病原的部分重要生物学特性进行研究.通过病理剖检、细菌和菌落形态观察、分子生物学鉴定、生化试验和动物回归试验,确定从8只病鸡分离的21株病原菌为大肠杆菌.对30种抗菌药物的药物敏感性试验分析表明,这些菌株存在广泛的多重耐药,特别是对青霉素G、阿莫西林、卡那霉素、甲氧嘧啶、复方新诺明、四环素、氯霉素和万古霉素耐药严重,对头孢哌酮、头孢曲松、头孢他啶、氨曲南、阿米卡星、妥布霉素较为敏感.对超广谱β-内酰胺酶(ESBL)表型及基因型分析可知,所有菌株均为产ESBL大肠杆菌,其主要的ESBL耐药基因为blaTEM.Abstract: In order to provide reference for integrated disease prevention and control of hen farms, a research was made to isolate and identify pathogens from a layer farm in Chongqing. Pathological examination, bacterial and clonal morphological examination, molecular biological identification, biochemical tests and animal regression test of 21 strains isolated from eight sick chickens on the farm showed that they were all Escherichia coli strains. Susceptibility test of 30 antimicrobials showed that all the isolates were multi-drug resistant. They were highly resistant to penicillin G, amoxicillin, kanamycin, sulfameter, trimethoprim-sulfamethoxazole, tetracycline, chloramphenicol and vancomycin, and fairly sensitive to cefoperazone, ceftriaxone, ceftazidime, aztreonam, amikacin and tobramycin. The phenotype and genotype analyses of the extended spectrum beta-lactamases (ESBLs) showed that the isolates were all ESBLs-producing E. coli and the main ESBL resistant gene was blaTEM.
-
表 1 大肠杆菌临床分离株生化试验结果
底物 菌株编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 半固体琼脂 + + + + + + + + + + + + + + + + + + + + + 赖氨酸 + + + + + + + + + + + + + + + + + + + + + 鸟氨酸 + + + + + + + + + + + + + + + + + + + + + 尿素 + + + + + + ⊕ ⊕ ⊕ + ⊕ ⊕ ⊕ + + ⊕ + ⊕ ⊕ ⊕ ⊕ 葡萄糖 ⊕ + ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + ⊕ ⊕ + + + ⊕ + ⊕ + 山梨醇 + ⊕ ⊕ + ⊕ + ⊕ ⊕ ⊕ ⊕ ⊕ + ⊕ + + ⊕ + + ⊕ + + 木糖 + ⊕ + + ⊕ ⊕ ⊕ + + + + ⊕ ⊕ + + + + + + ⊕ + 棉子糖 - + + + + - + + + + + + + + + + + + + + + 硫化氢 - - - - - - - - - - - - - - - - - - - - - 苯丙氨酸 - - - - - - - - - - - - - - - - - - - - - 葡萄糖酸盐 - - - - - - - - - - - - - - - - - - - - - 蛋白胨水 - - - - - - - - - - - - - - - - - - - - - 葡磷胨水 - - - - - - - - - - - - - - - - - - - - - 枸橼酸盐 - - - - - - - - - - - - - - - - - - - - - 侧金盏花醇 - - - - - - - - - - - - - - - - - - + - - +:阳性;-:阴性;⊕:产酸并产气. 表 2 大肠杆菌临床分离株药敏试验结果
抗菌药物 判定标准 结果 药物种类 药物名称 敏感S 中敏I 耐药R 敏感/% 中敏/% 耐药/% 喹诺酮类 环丙沙星 ≥21 16~20 ≤15 5(23.8) 0 16(76.2) 恩诺沙星 ≥23 17~22 ≤16 0 5(23.8) 16(76.2) 氧氟沙星 ≥16 13~15 ≤12 6(28.6) 7(33.3) 8(38.1) 诺氟沙星 ≥17 13~16 ≤12 6(28.6) 2(9.5) 13(61.9) 青霉素类 青霉素G ≥15 ≤14 0 0 21(100) 氨苄西林 ≥17 14~16 ≤13 0 9(42.9) 12(57.1) 阿莫西林 ≥17 14~16 ≤13 2(9.5) 0 19(90.5) 头孢菌素类 头孢噻吩 ≥18 15~17 ≤14 0 10(47.6) 11(52.4) 头孢氨苄 ≥18 15~17 ≤14 11(52.4) 4(19.0) 6(28.6) 头孢拉定 ≥18 15~17 ≤14 1(4.8) 13(61.9) 7(33.3) 头孢唑啉 ≥23 20~22 ≤19 0 11(52.4) 10(47.6) 头孢哌酮 ≥21 16~20 ≤15 17(81.0) 0 4(19.0) 头孢曲松 ≥23 20~22 ≤19 17(81.0) 0 4(19.0) 头孢噻肟 ≥26 23~25 ≤22 5(23.8) 7(33.3) 9(42.9) 头孢他啶 ≥18 15~17 ≤14 20(95.2) 1(4.8) 0 单环β-内酰胺类 氨曲南 ≥21 18~20 ≤17 16(76.2) 3(14.3) 2(9.5) 氨基糖苷类 链霉素 ≥15 12~14 ≤11 10(47.6) 2(9.5) 9(42.9) 卡那霉素 ≥18 14~17 ≤13 2(9.5) 0 19(90.5) 庆大霉素 ≥15 13~14 ≤12 16(76.2) 0 5(23.8) 阿米卡星 ≥17 15~16 ≤14 21(100) 0 0 妥布霉素 ≥15 15~16 ≤14 19(90.5) 2(9.5) 0 磺胺类 甲氧嘧啶 ≥17 13~16 ≤12 0 0 21(100) 复方新诺明 ≥16 11~15 ≤10 0 0 21(100) 四环素类 四环素 ≥15 12~14 ≤11 0 0 21(100) 强力霉素 ≥14 11~13 ≤10 1(4.8) 16(76.2) 4(19.0) 酰胺醇类 氯霉素 ≥18 13~17 12≤ 2(9.5) 0 19(90.5) 氟苯尼考 ≥22 19~21 ≤18 7(33.3) 0 14(66.7) 大环内酯类 红霉素 ≥23 14~11 ≤13 0 9(42.9) 12(57.1) 阿奇霉素 ≥23 14~22 ≤13 13(62.0) 4(19.0) 4(19.0) 糖肽类 万古霉素 ≥17 15~16 ≤14 0 0 21(100) -
[1] 陈溥言.兽医传染病学[M]. 5版.北京:中国农业出版社, 2006. [2] CHEN X, ZHANG W, YIN J, et al. Escherichia coli Isolates from Sick Chickens in China: Changes in Antimicrobial Resistance Between 1993 and 2013[J]. Vet J, 2014, 202(1): 112-115. doi: 10.1016/j.tvjl.2014.06.016 [3] WU H, XIA S, BU F, et al. Identification of Integrons and Phylogenetic Groups of Drug-Resistant Escherichia coli from Broiler Carcasses in China[J]. Int J Food Microbiol, 2015, 211: 51-56. doi: 10.1016/j.ijfoodmicro.2015.07.004 [4] doi: http://www.ncbi.nlm.nih.gov/pubmed/27035748 JIMÉNEZ-BELENGUER A, DOMÉNECH E, VILLAGRÁ A, et al. Antimicrobial Resistance of Escherichia coli Isolated in Newborn Chickens and Effect of Amoxicillin Treatment During Its Growth[J]. Avian Pathol, 2016, 45(6): 501-517. [5] OLSEN R H, BISGAARD M, LÖHREN U, et al. Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Poultry: a Review of Current Problems, Illustrated with Some Laboratory Findings[J]. Avian Pathol, 2014, 43(3): 199-208. doi: 10.1080/03079457.2014.907866 [6] HU Q, TU J, HAN X, et al. Development of Multiplex PCR Assay for Rapid Detection of Riemerella anatipestifer, Escherichia coli, and Salmonella enterica Simultaneously from Ducks[J]. J Microbiol Methods, 2011, 87(1): 64-69. doi: 10.1016/j.mimet.2011.07.007 [7] STÜRENBURG E, KÜHN A, MACK D, et al. A Novel Extended-Spectrum β-Lactamase CTX-M-23 with a P167T Substitution in the Active-Site Omega Loop Associated with Ceftazidime Resistance[J]. Journal of Antimicrobial Chemotherapy, 2004, 54(2): 406-409. doi: 10.1093/jac/dkh334 [8] doi: http://www.ncbi.nlm.nih.gov/pubmed/10325320 PAI H, LYU S, LEE J H, et al. Survey of Extended-Spectrum β-Lactamases in Clinical Isolates of Escherichia coli and Klebsiella pneumoniae: Prevalence of TEM-52 in Korea[J]. J Clin Microbiol, 1999, 37(6): 1758-1763. [9] doi: http://www.ncbi.nlm.nih.gov/pubmed/16604245 YAN J J, TSAI S H, CHUANG C L, et al. OXA-Type Beta-Lactamases Among Extended-Spectrum Cephalosporin-Resistant Pseudomonas aeruginosa Isolates in a University Hospital in Southern Taiwan[J]. J Microbiol Immunol Infect, 2006, 39(2): 130-134. [10] BERT F, BRANGER C, LAMBERT-ZECHOVSKY N. Identification of PSE and OXA β-Lactamase Genes in Pseudomonas aeruginosa Using PCR-Restriction Fragment Length Polymorphism[J]. J Antimicrob Chemother, 2002, 50(1): 11-18. doi: 10.1093/jac/dkf069 [11] PASTERÁN F, RAPOPORT M, PETRONI A, et al. Emergence of PER-2 and VEB-1a in Acinetobacter baumannii Strains in the Americas[J]. Antimicrob Agents Chemother, 2006, 50(9): 3222-3224. doi: 10.1128/AAC.00284-06 [12] CELENZA G, PELLEGRINI C, CACCAMO M, et al. Spread of BlaCTX-M-Type and blaPER-2 β-Lactamase Genes in Clinical Isolates from Bolivian Hospitals[J]. J Antimicrob Chemother, 2006, 57(5): 975-978. doi: 10.1093/jac/dkl055 [13] doi: http://www.sciencedirect.com/science/article/pii/S0378109704002125 VOURLI S, GIAKKOUPI P, MIRIAGOU V, et al. Novel GES/IBC Extended-Spectrum β-Lactamase Variants with Carbapenemase Activity in Clinical Enterobacteria[J]. FEMS Microbiol Lett, 2004, 234(2): 209-213. [14] HORTON R A, RANDALL L P, SNARY E L, et al. Fecal Carriage and Shedding Density of CTX-M Extended-Spectrum β-Lactamase-Producing Escherichia coli in Cattle, Chickens, and Pigs: Implications for Environmental Contamination and Food Production[J]. Appl Environ Microbiol, 2011, 77(11): 3715-3719. doi: 10.1128/AEM.02831-10 [15] MELLATA M. Human and Avian Extraintestinal Pathogenic Escherichia coli: Infections, Zoonotic Risks, and Antibiotic Resistance Trends[J]. Foodborne Pathog Dis, 2013, 10(11): 916-932. doi: 10.1089/fpd.2013.1533 [16] JOHNSON T J, LOGUE C M, JOHNSON J R, et al. Associations Between Multidrug Resistance, Plasmid Content, and Virulence Potential Among Extraintestinal Pathogenic and Commensal Escherichia coli from Humans and Poultry[J]. Foodborne Pathog Dis, 2012, 9(1): 37-46. doi: 10.1089/fpd.2011.0961 [17] doi: http://www.sciencedirect.com/science/article/pii/S0378113511004081 CHEN Y P, LEE S H, CHOU C H, et al. Detection of Florfenicol Resistance Genes in Riemerella anatipestifer Isolated from Ducks and Geese[J]. Veterinary Microbiology, 2012, 154(3): 325-331. [18] SHAH A A, HASAN F, AHMED S, et al. Characteristics, Epidemiology and Clinical Importance of Emerging Strains of Gram-Negative Bacilli Producing Extended-Spectrum β-Lactamases[J]. Res Microbiol, 2004, 155(6): 409-421. doi: 10.1016/j.resmic.2004.02.009 [19] HIROI M, MATSUI S, KUBO R, et al. Factors for Occurrence of Extended-Spectrum β-Lactamase-Producing Escherichia coli in Broilers[J]. J Vet Med Sci, 2012, 74(12): 1635-1637. doi: 10.1292/jvms.11-0479