-
投喂频率(feeding frequency)是鱼类养殖生产管理中的重要组成环节.投喂频率的高低不仅会引起鱼类存活、生长速度、摄食和饲料转化效率的变化[1-4],而且会对鱼类体成分、免疫活性、消化酶活力和病害抵抗力产生影响[5-7],进而影响到鱼类的生长性能和生产效益[8].适宜的投喂频率可以增加饲料利用率,促进鱼类快速生长,提高养殖产量和经济效益[1, 9].不合理的投喂频率会导致养殖鱼类生长缓慢、个体规格分化大和较高的死亡率[10-11].因此,开展鱼类投喂频率研究,对优化饵料投喂日常管理和推动水产养殖产业的生态健康发展具有重要的指导意义.
鞍带石斑鱼(Epinephelus lanceolatus)又称龙胆石斑鱼,隶属于鲈形目(Perciformes)、鮨科(Serranidae)、石斑鱼属(Epinephalus)的暖水性海产经济鱼类.其自然群体主要分布于太平洋、印度洋和澳大利亚的海域,在中国的海南、台湾和南海诸岛等地区都有分布[12-13].鞍带石斑鱼生长快、抗病力强、肉质鲜美、营养丰富,具有较高的食用和观赏价值[14],成为消费者和养殖户喜爱的石斑鱼品种.目前,鞍带石斑鱼的国内外研究主要集中于人工育苗技术[12]、胚胎发育[14]、形态分析[15]和分子生物学[16]等方面,而有关投喂频率对流水养殖模式下鞍带石斑鱼生长、摄食及免疫酶活力的影响研究尚未见报道.鉴于此,本文以鞍带石斑鱼为实验对象,研究了不同投喂频率对流水养殖鞍带石斑鱼生长、摄食及免疫酶活力影响的变化规律,确定最优的日投喂频率,为鞍带石斑鱼在水泥池流水养殖模式下规模化生产和科学饲料投喂管理提供理论参考.
全文HTML
-
鞍带石斑鱼由厦门小嶝水产科技有限公司提供,选择初始体长(31.19±2.12) cm,全长(34.89±2.24) cm,体质量(858.73±191.45) g的健壮鱼.
实验饵料选用冰鲜沙溜鱼,其粗蛋白超过59.1%,粗脂肪超过24.6%,粗灰分低于2.5%,水分低于67.3%.
养殖系统:采用6个流水模式的水泥养殖池,每个鱼池为八边形切角的砖混结构,尺寸为5.5 m×5.5 m,切角1.0 m×1.0 m,向心设计1.5%坡度,池深1.35 m,单个鱼池有效养殖面积为28.25 m2.进水通过45° PVC弯头形成侧向射流,同时池底中心设置一个圆形集污坑,安装PVC排污装置,以便排出鱼池底部中心的残饵、粪便和鱼池表面油膜.
-
实验为期60 d,采用单因素实验设计,设置3组投喂频率:1次/d(15:00-16:30,记为A1),1次/2 d(15:00-16:30,记为A2),1次/3 d(15:00-16:30,记为A3).每组设2个重复,每个重复放养鞍带石斑鱼250尾,合计1 500尾.实验期间,按照投喂频率设定的时间频率饲喂冰鲜杂鱼,饲喂量以饱食为准.每次饲喂时,观察鞍带石斑鱼摄食不活跃即停止喂食.每次投饲50 min后,采用捞网收集残留的饵料鱼,称量未摄食的饵料量,并计算每日实际摄食量.每天观察鞍带石斑鱼的活动状况,记录死鱼数量.实验阶段,水温保持在(25.0~29.4) ℃,盐度27‰~30‰,pH=7.2~7.8,溶解氧为5.1~6.1 mg/L,亚硝酸盐小于0.05 mg/L,总氨氮(TAN)<0.20 mg/L.
-
实验结束时,将鞍带石斑鱼饥饿24 h,每个重复组中随机取30尾实验鱼测量体长、全长和体质量,统计存活量以及饵料鱼饲喂量、残饵量,计算鞍带石斑鱼生长和摄食指标.同时,每个实验组随机取出3尾空腹鱼进行尾静脉采集血液,血样先注入置于碎冰中的含肝素钠抗凝的离心管内,然后以5 000 r/min离心10 min,取血浆置于-70 ℃下保存,待测碱性磷酸酶、过氧化氢酶和超氧化物歧化酶活性.
-
待检测的免疫酶包括碱性磷酸酶(AKP)、过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性,均采用南京建成生物工程研究所生产的试剂盒测定.
-
成活率(survival rate,SR)
特定生长率(specific growth rate,SGR)
肥满度(condition factor,CF)
相对增质量(relative weight gain,RWG)
日增质量(daily weight gain,DWG)
体质量变异系数(coefficient of size variation,SV)
日摄食率(food intake,FI)
饲料系数(food conversion ratio,FCR)
饲料转化效率(food conversion efficiency,FCE)
上述公式中,Ni,Nf分别为初始鱼尾数和最终鱼尾数;BW1,BW2分别为每尾鱼实验初始体质量和最终体质量(g);T1,T2分别为BW1,BW2时所对应时间;BW为每尾鱼的体质量(g);BL为每尾鱼体长(cm);SD为标准差;F为总摄食量(g);X为处理组鱼的平均体质量(g).
-
实验数据采用SPSS 18.0统计软件进行单因素方差(0ne-way ANOVA)分析,若组间差异具有统计学意义,再用LSD法进行多重比较,差异性水平为p<0.05.实验数值采用平均值±标准差(Mean±SD)表示.
1.1. 实验材料
1.2. 实验设计与管理
1.3. 样品采集
1.4. 免疫酶活力测定
1.5. 测定指标计算公式
1.6. 数据处理
-
在不同投喂频率下,经过60 d的流水养殖,鞍带石斑鱼成活率、特定生长率、相对增质量、日增质量、肥满度和体质量变异系数分析结果见表 1.从表 1可以看出,各个实验组存活率在99.40%~99.80%之间.投喂频率对流水养殖鞍带石斑鱼成活率、日增质量、肥满度和体质量变异系数的影响差异均不具有统计学意义(p>0.05),而A1组、A2组的特定生长率和相对增质量均显著高于A3组(p<0.05),平均特定生长率和相对增质量由高至低依次均为A1>A2>A3.
-
A1组日摄食率最高,与A3组差异具有统计学意义(p<0.05),与A2组差异不具有统计学意义(p>0.05),A2组、A3组间差异不具有统计学意义(p>0.05),平均日摄食率由高至低依次为A1,A2,A3;A2组饵料转化效率最高,与A3组差异具有统计学意义(p<0.05),与A1组差异不具有统计学意义(p>0.05),A1组、A3组间差异不具有统计学意义(p>0.05),平均饵料转化效率由高至低依次为A2,A1,A3;A1组、A2组和A3组之间的饵料系数差异不具有统计学意义(p>0.05)(表 2).
-
实验结束时,在流水养殖模式下,不同投喂频率对鞍带石斑鱼的碱性磷酸酶、过氧化氢酶和超氧化物歧化酶活力影响的动态变化见表 3.数据分析结果表明,各处理组鞍带石斑鱼的平均碱性磷酸酶活力为0.083 5~0.089 4金氏单位/mL,过氧化氢酶活力为7.96~8.19 U/mL,超氧化物歧化酶活力为32.40~34.45 U/mL,各处理组之间上述免疫酶活力指标的差异不具有统计学意义(p>0.05).
2.1. 不同投喂频率对鞍带石斑鱼生长的影响
2.2. 不同投喂频率对鞍带石斑鱼摄食的影响
2.3. 不同投喂频率对鞍带石斑鱼免疫酶活力的影响
-
不同投喂频率梯度对鱼类生长性能有着不同程度的影响. Marimuthu等[17]对非洲鲶鱼(Clarias gariepinus)幼鱼的投喂频率实验结果表明:1次/d、2次/d的成活率较高,分别达到(96.67%±5.77%),(86.67%±5.77%),但是各实验组成活率的差异性不具有统计学意义.在本实验条件下,各投喂频率组鞍带石斑鱼成活率均在99.0%以上,各投喂频率组对鞍带石斑鱼成活率的影响不具有统计学意义(p>0.05).这与对非洲鲶鱼[17]、神仙鱼[18]的研究结论比较接近,说明投喂频率不影响鞍带石斑鱼的成活率. Kasiri等[18]研究表明,投喂频率对神仙鱼(Pterophyllum scalare)肥满度的影响不具有统计学意义,而4次/d、2次/d的体质量和特定生长率显著高于1次/d和1次/2 d.纪文秀等[19]发现,按1次/4 d的频率投喂冰鲜杂鱼上升至1次/d时,投喂频率对点带石斑鱼特定生长率和增质量的影响差异具有统计学意义,而饲喂频率从1次/d提高至4次/d时,对特定生长率和增质量影响不明显.董桂芳等[20]投喂频率研究显示,斑点叉尾鮰分别投喂2次/d组、3次/d组、4次/d组和5次/d频率的体质量变异系数均显著小于1次/d组.在本研究中,不同投喂频率下,鞍带石斑鱼日增质量、肥满度和体质量变异系数的差异不具有统计学意义(p>0.05),而1次/d组、1次/2 d组的相对增质量和特定生长率均显著高于1次/3 d组(p<0.05),相对增质量和特定生长率平均值由高至低顺序均为1次/1 d组、1次/2 d组、1次/3 d组.本实验结论与上述的研究结果不一致,这可能是实验对象规格、养殖模式等因素所导致的.但与对点带石斑鱼[19]、巨石斑鱼(Epinephelus tauvina)[21]生长率的研究结果比较接近,表明较低的投喂频率不利于鞍带石斑鱼的生长,建议流水养殖模式下鞍带石斑鱼的适宜投喂频率为1次/d或1次/2 d.
-
纪文秀等[19]在网箱养殖模式下研究了投喂频率对点带石斑鱼食物利用的影响,认为投喂频率从4 d饲喂1次上升到1 d饲喂1次时饲料系数和日摄食率显著增加,当从1 d投喂1次增加到1 d投喂4次时饲料系数和日摄食率差异不具有统计学意义.宋国等[22]对条石鲷投喂频率的研究表明,1次/2 d、1次/d、2次/d、3次/d和4次/d投喂频率对条石鲷幼鱼饲料转化率的影响差异不具有统计学意义. Wu等[23]对初始体质量为(0.064±0.004) g稀有鮈鲫投喂频率的研究结果表明,在适宜的水温条件下,2次/d投喂频率可以最大程度地提高饲料转化效率.骆季安等[24]研究表明,日本黄姑鱼不同饲喂频率处理组的摄食率、食物转化率差异具有统计学意义,且多次饲喂的日本黄姑鱼摄食率和食物转化率显著高于单次饲喂.在本研究中,1次/d组的日平均摄食率(2.87%/d)最高,与1次/3 d组差异具有统计学意义(p<0.05),与1次/2 d组差异不具有统计学意义(p>0.05),1次/2 d组、1次/3 d组间差异不具有统计学意义(p>0.05);1次/2 d组平均饵料转化效率(36.99%)最高,与1次/3 d组差异具有统计学意义(p<0.05),与1次/d组差异不具有统计学意义(p>0.05),1次/d组、1次/3 d组间差异不具有统计学意义(p>0.05);1次/d组、1次/2 d组和1次/3 d组之间的饵料系数差异不具有统计学意义(p>0.05).此结论与前人的研究结果不一致[17, 19, 22-24],这可能与实验对象种类、规格大小、栖息环境和投喂饵料等方面存在差异有关.
-
碱性磷酸酶(AKP)存在动物体内,直接催化水解磷酸单酯,转移磷酸基团,能在动物免疫反应中起着作用,为动物非特异性免疫重要指标[25-26].超氧化物歧化酶(SOD)和过氧化氢酶(CAT)作为水产动物的抗氧化主要因子,超氧化物歧化酶能将损伤机体的超氧阴离子(O2-)自由基歧化为过氧化氢(H2O2),接着储存在水产动物体内的过氧化物酶体中的过氧化氢酶(CAT)可催化过氧化氢生成氧气和水,可以说超氧化物歧化酶和过氧化氢酶活力动态变化能反映水产机体在环境胁迫下的免疫力[27-29].窦艳君等[30]对点带石斑鱼投喂频率的研究指出,第28 d时投喂频率对点带石斑鱼过氧化氢酶(CAT)和总超氧化物歧化酶(T-SOD)影响差异均不具有统计学意义;第56 d时,不同投喂频率对过氧化氢酶(CAT)影响差异不具有统计学意义,1次/d组总超氧化物歧化酶活性显著大于3次/d组;第84 d时,2次/d组的血浆CAT,T-SOD显著大于其他各处理组.陈文霞等[31]研究了投喂频率对凡纳滨对虾免疫酶活力的影响,认为投喂频率2次/d组、3次/d组、4次/d组与5次/d组、6次/d组间超氧化物歧化酶(SOD)和碱性磷酸酶(AKP)活力差异具有统计学意义.本研究结果显示,在流水养殖模式下,实验结束时各实验组鞍带石斑鱼的平均碱性磷酸酶浓度为0.083 5~0.089 4金氏单位/mL,超氧化物歧化酶含量为32.40~34.45 U/mL,过氧化氢酶含量为7.96~8.19 U/mL,各实验组间上述免疫酶活力指标的差异不具有统计学意义(p>0.05).此结果与上述研究报道既有相似之处,又有一些不同,说明在流水养殖鞍带石斑鱼过程中,要根据鞍带石斑鱼摄食活跃状况来调整日投喂频率.