留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

基于ITS序列的竹亚科植物分子鉴定研究

上一篇

下一篇

王苗苗, 王孝仕, 左龙亚, 等. 基于ITS序列的竹亚科植物分子鉴定研究[J]. 西南大学学报(自然科学版), 2018, 40(7): 44-50. doi: 10.13718/j.cnki.xdzk.2018.07.007
引用本文: 王苗苗, 王孝仕, 左龙亚, 等. 基于ITS序列的竹亚科植物分子鉴定研究[J]. 西南大学学报(自然科学版), 2018, 40(7): 44-50. doi: 10.13718/j.cnki.xdzk.2018.07.007
Miao-miao WANG, Xiao-shi WANG, Long-ya ZUO, et al. Molecular Identification of Bambusoideae Plants Based on ITS Sequences[J]. Journal of Southwest University Natural Science Edition, 2018, 40(7): 44-50. doi: 10.13718/j.cnki.xdzk.2018.07.007
Citation: Miao-miao WANG, Xiao-shi WANG, Long-ya ZUO, et al. Molecular Identification of Bambusoideae Plants Based on ITS Sequences[J]. Journal of Southwest University Natural Science Edition, 2018, 40(7): 44-50. doi: 10.13718/j.cnki.xdzk.2018.07.007

基于ITS序列的竹亚科植物分子鉴定研究

  • 基金项目: 国家自然科学基金项目(31171930);中央高校基本科研业务费双创资金项目(XDJK2016E143)
详细信息
    作者简介:

    王苗苗(1992-), 女, 硕士研究生, 主要从事植物分类学研究 .

    通讯作者: 于杰, 博士, 副教授
  • 中图分类号: Q949.71+4.2

Molecular Identification of Bambusoideae Plants Based on ITS Sequences

  • 摘要: 利用ITS序列对竹亚科13个属76个竹种进行DNA条形码分子鉴定.该研究提取慈竹属、刚竹属、箬竹属、唐竹属、矢竹属、大明竹属、赤竹属、巴山木竹属、倭竹属、短穗竹属、簕竹属、酸竹属及少穗竹属共13个属62个竹种DNA,对其内转录间隔区ITS序列进行PCR扩增和双向测序,所得序列与GenBank数据库下载的14条ITS序列共76个竹种序列用Clustal X软件比对,再利用MEGA6.06软件构建K2P距离法的NJ系统发育树.结果显示,种内遗传距离为0~3.907,平均遗传距离为0.370;种间遗传距离为0~4.394,平均遗传距离为2.287,种内遗传距离远小于种间遗传距离.ITS序列可用于竹类资源的物种鉴定研究.
  • 加载中
  • 图 1  ITS序列的种内变异和种间变异分布

    图 2  基于ITS序列构建的竹亚科样品的邻接(NJ)树

    表 1  供试竹类植物样品信息

    来源 编号 拉丁名 分组 长度/bp G+C含量/%
    GenBankDQ270121.1/梁平县竹博园 1,2 慈竹 Neosinocalamus affinis 慈竹属 Gp1 395.0 67.6
    GenBankEU847118.1/梁平县竹博园 3,4 水竹 Phyllostachys heteroclada 刚竹属 Gp2 406.0 69.0
    GenBankDQ131503.1/梁平县竹博园 5,6 篌竹 Phyllostachys nidularia 刚竹属 Gp3 406.0 69.0
    GenBankJN247376.1/梁平县竹博园 7,8 巴山箬竹 Indocalamus bashanensis 箬竹属 Gp4 403.0 61.0
    GenBankKC004045.1/梁平县竹博园 9,10 阔叶箬竹 Indocalamus latifolius 箬竹属 Gp5 403.0 53.1
    GenBankEU847119.1/梁平县竹博园 11,12 晾衫竹 Sinobambusa intermedia 唐竹属 Gp6 403.0 59.5
    GenBankEU847121.1/梁平县竹博园 13,14 红舌唐竹 Sinobambusa rubroligula 唐竹属 Gp7 413.0 62.2
    GenBankEU847136.1/梁平县竹博园 15,16 曙筋矢竹 Pseudosasa japonica 矢竹属 Gp8 404.0 69.3
    GenBankEU847134.1/梁平县竹博园 17,18 秋竹 Pleioblastus oleosus 大明竹属 Gp9 405.0 69.1
    GenBankHQ600538.1/梁平县竹博园 19,20 毛金竹 Phyllostachys nigra 刚竹属 Gp10 406.0 69.2
    GenBankGQ464839.1/梁平县竹博园 21,22 菲白竹 Sasa fortunei 赤竹属 Gp11 395.0 52.2
    GenBankGQ464808.1/梁平县竹博园 23,24 巴山木竹 Bashania fargesii 巴山木竹属 Gp12 417.0 43.9
    GenBankGQ464844.1/梁平县竹博园 25,26 鹅毛竹 Shibataea chinensis 倭竹属 Gp13 393.0 51.1
    GenBankGQ464809.1/梁平县竹博园 27,28 短穗竹 Brachystachyum densiflorum 短穗竹属 Gp14 384.0 54.3
    梁平县竹博园/茶山竹海景区 29,30 红后竹 Phyllostachys rubicunda 刚竹属 Gp15 414.0 52.4
    梁平县竹博园/茶山竹海景区 31,32 高节竹 Phyllostachys prominens 刚竹属 Gp16 408.0 56.1
    梁平县竹博园/茶山竹海景区 33,34 早竹 Phyllostachys praecox 刚竹属 Gp17 402.0 66.2
    梁平县竹博园/茶山竹海景区 35,36 安吉水胖竹 Phyllostachys canvava 刚竹属 Gp18 403.0 60.8
    梁平县竹博园/茶山竹海景区 37,38 罗汉竹 Bambusa ventricosa 簕竹属 Gp19 396.0 45.2
    梁平县竹博园/茶山竹海景区 39,40 红壳雷竹 Phyllostachys incarnata 刚竹属 Gp20 402.0 56.0
    梁平县竹博园/茶山竹海景区 41,42 黄槽斑竹 Phyllostachys bambusoides 刚竹属 Gp21 402.0 43.3
    梁平县竹博园/茶山竹海景区 43,44 实肚竹 Phyllostachys nidularia 刚竹属 Gp22 408.0 55.9
    梁平县竹博园/茶山竹海景区 45,46 黎竹 Acidosasa venusta 酸竹属 Gp23 418.0 51.9
    梁平县竹博园/茶山竹海景区 47,48 金丝毛竹 Phyllostachys heterocycla 刚竹属 G24 404.0 57.4
    梁平县竹博园/茶山竹海景区 49,50 斗竹 Oligostachyum spongiosum 少穗竹属 Gp25 408.0 52.5
    梁平县竹博园/茶山竹海景区 51,52 黄古竹 Phyllostachys angusta 刚竹属 Gp26 405.0 51.6
    梁平县竹博园/茶山竹海景区 53,54 黄竿乌哺鸡竹 Phyllostachys vivax 刚竹属 Gp27 442.0 49.3
    梁平县竹博园/茶山竹海景区 55,56 斑苦竹 Phyllostachys maculates 刚竹属 Gp28 442.0 51.8
    梁平县竹博园/茶山竹海景区 57,58 金竹 Phyllostachys sulphurea 刚竹属 Gp29 405.0 53.6
    梁平县竹博园/茶山竹海景区 59,60 寿竹 Phyllostachys bambusoides 刚竹属 Gp30 407.0 49.6
    梁平县竹博园/茶山竹海景区 61,62 淡竹 Phyllostachys glauca 刚竹属 Gp31 407.0 53.6
    梁平县竹博园/茶山竹海景区 63,64 红哺鸡竹 Phyllostachys iridescens 刚竹属 Gp32 403.0 56.1
    梁平县竹博园/茶山竹海景区 65,66 狭叶倭竹 Shibataea lanceifolia 倭竹属 Gp33 407.0 51.4
    梁平县竹博园/茶山竹海景区 67,68 紫竹 Phyllostachys nigra 刚竹属 Gp34 406.0 53.2
    梁平县竹博园/茶山竹海景区 69,70 无毛翠竹 Sasa pygmaea 赤竹属 Gp35 405.0 52.3
    梁平县竹博园/茶山竹海景区 71,72 铺地竹 Sasa argenteistriatus 赤竹属 Gp36 405.0 53.8
    梁平县竹博园/茶山竹海景区 73,74 黄槽石绿竹 Phyllostachys arcane 刚竹属 Gp37 400.0 50.3
    梁平县竹博园/茶山竹海景区 75,76 托竹 Pseudosasa cantori 矢竹属 Gp38 403.0 51.9
    下载: 导出CSV
  • [1] doi: http://link.springer.com/10.1007/978-3-319-14133-6_1 CLARK L G, LONDONO X, RUIZ-SANCHEZ E. Bamboo Taxonomy and Habitat[J]. Bamboo, 2015, 10(2):1-30.
    [2] ZHOU M B, LU J J, HAO Z, et al. Distribution and Diversity of PIF-Like Transposable Elements in the Bambusoideae Subfamily[J]. Plant Science, 2010, 179(3):257-266. doi: 10.1016/j.plantsci.2010.05.012
    [3] 胡成华, 汤敬杉.倭竹族花序演化的探讨[J].广西植物, 1991, 11(2):141-145. doi: http://www.cqvip.com/QK/90987X/199102/492762.html
    [4] 丁雨龙. 刚竹属(Phyllostachys)系统分类的研究[D]. 南京: 南京林业大学, 1998.
    [5] 杨汉奇, 李德铢.中国竹亚科空竹属的整理[J].植物分类与资源学报, 2015, 37(5):546-550. doi: http://www.oalib.com/paper/1497599
    [6] 师玉华, 孙伟, 方广宏, 等.凉茶药材鸡蛋花及其混伪品的DNA条形码鉴定[J].中国中药杂志, 2014, 39(12):2199-2203. doi: http://www.cqvip.com/QK/95973X/201412/50058089.html
    [7] LAHAYE R, BANK M V D, BOGARIN D, et al. From the Cover:DNA Barcoding the Floras of Biodiversity Hotspots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(8):2923-2928. doi: 10.1073/pnas.0709936105
    [8] 任保青, 陈之瑞.植物DNA条形码技术[J].植物学报, 2010, 45(1):1-12. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXT201001003.htm
    [9] 宁淑萍, 颜海飞, 郝刚, 等.植物DNA条形码研究进展[J].生物多样性, 2008, 16(5):417-425. doi: http://www.oalib.com/paper/5258165
    [10] 张汉尧, 刘小珍, 龚秀会, 等.竹子DNA提取方法的改良及ITS-RFLP分析的初步研究[J].江西林业科技, 2006(3):3-5. doi: http://www.cqvip.com/QK/93956X/200603/22110251.html
    [11] YAO H, SONG J Y, MA X Y, et al. Identification of Dendrobium Species by a Candidate DNA Barcode Sequence:the Chloroplast psbA-trnH Intergenic Region[J]. Planta Medica, 2009, 75(6):667-669. doi: 10.1055/s-0029-1185385
    [12] 朱芳明, 杜建伟, 周国贤, 等.基于DNA序列分析的刚竹属系统树构建[J].西部林业科学, 2015(2):63-68. doi: http://www.cqvip.com/QK/92399X/201502/664477017.html
    [13] doi: http://ci.nii.ac.jp/naid/20001450297 TAMURA K, PETERSON D, PETERSON N, et al. MEGA5:Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods[J]. Molecular Biology & Evolution, 2011, 28(10):2731-2739.
    [14] SONG H X, GAO S P, JIANG M Y, et al. The Evolution and Ribosomal ITS Sequences in Bambusinae and Related Species:Divergence, Pseudogenes, and Implications for Phylogeny[J]. Journal of Genetics, 2012, 91(2):129-139. doi: 10.1007/s12041-012-0170-6
    [15] 张光楚, 陈富枢.竹类杂交育种的研究[J].林业与环境科学, 1986(3):1-5. doi: http://www.oalib.com/paper/5078155
    [16] doi: http://doi.wiley.com/10.1111/1755-0998.12248 ZHANG Li-na, ZHANG Xian-zhi, ZHANG Yu-xiao, et al. Identification of Putative Orthologous Genes for the Phylogenetic Reconstruction of Temperate Woody Bamboos (Poaceae:Bambusoideae)[J]. Molecular Ecology Resources, 2014, 14(5):988-99.
    [17] MA P F, ZHANG Y X, ZENG C X, et al. Chloroplas Phylogenomic Analyses Resolve Deep-Level Relationships of an Intractable Bamboo Tribe Arundinarieae (Poaceae)[J]. Systematic Biology, 2014, 63(6):933-950. doi: 10.1093/sysbio/syu054
  • 加载中
图( 2) 表( 1)
计量
  • 文章访问数:  1113
  • HTML全文浏览数:  797
  • PDF下载数:  131
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-05-20
  • 刊出日期:  2018-07-20

基于ITS序列的竹亚科植物分子鉴定研究

    通讯作者: 于杰, 博士, 副教授
    作者简介: 王苗苗(1992-), 女, 硕士研究生, 主要从事植物分类学研究
  • 1. 西南大学 园艺园林学院, 重庆 400715
  • 2. 重庆市梁平县农业委员会, 重庆 405200
  • 3. 南方山地园艺学教育部重点实验室, 重庆 400715
基金项目:  国家自然科学基金项目(31171930);中央高校基本科研业务费双创资金项目(XDJK2016E143)

摘要: 利用ITS序列对竹亚科13个属76个竹种进行DNA条形码分子鉴定.该研究提取慈竹属、刚竹属、箬竹属、唐竹属、矢竹属、大明竹属、赤竹属、巴山木竹属、倭竹属、短穗竹属、簕竹属、酸竹属及少穗竹属共13个属62个竹种DNA,对其内转录间隔区ITS序列进行PCR扩增和双向测序,所得序列与GenBank数据库下载的14条ITS序列共76个竹种序列用Clustal X软件比对,再利用MEGA6.06软件构建K2P距离法的NJ系统发育树.结果显示,种内遗传距离为0~3.907,平均遗传距离为0.370;种间遗传距离为0~4.394,平均遗传距离为2.287,种内遗传距离远小于种间遗传距离.ITS序列可用于竹类资源的物种鉴定研究.

English Abstract

  • 竹亚科(Bambusoideae)为禾本科(Poaceae) 12个亚科中最大的亚科之一,因竹杆具有木纤维而不同于其他禾本类植物.全世界的竹亚科植物约有119属,已被描述的1 500个种是森林植被极为重要的组成部分[1].竹子以根状茎繁殖为主,且很少开花结实,利用花和果实等生殖性状对竹子进行分类受到极大限制.现阶段系统划分主要依据竹子的营养器官如地下茎、杆箨、分枝方式,但这些形态性状极为相似,难以观察和判定,且容易受到生境、生长阶段、生长部位乃至个体大小等因素的影响,加上在后期栽植中出现不同程度的无性系变异特征被放大,造成分类界定上的混乱.事实上,一些形态上有显著差异的竹子,可能有更大程度的遗传相似性[2],因而为解决由形态性征不同而造成的分类问题,直接从分子角度进行研究尤为重要.

    核苷酸序列作为最直接、最稳定的标记性状,现已成功应用于植物各分类阶元的系统发育构建,其最大优势在于能提供相对客观的分子证据,可以直接反映物种的遗传变异,是近年来竹子系统鉴定的主要手段之一.竹亚科各类分类研究涵盖的范围较广,不同学者先后以族或属(群)为主题作了相应的研究和探讨.研究主要涉及倭竹族[3]、刚竹属Phyllostachys[4]、空竹属Cephalostachyum[5]等. DNA条形码(DNA barcoding)技术是近年来在物种鉴定领域发展的一种新方法[6].一段好的DNA条形码必须具有较高的种间变异性,以区别不同的物种,同时保持较低的种内变异性[7],核基因组的ITS是较为热门的一个DNA条形码[8-9].在第三届DNA条形码国际学术大会上,与会者一致建议选择进化速率较快的ITS探讨它们在陆生植物中的通用性、分辨率和适合程度,ITS适合于属种间较低等级的系统发育研究[10]. ITS是指18SrDNA和28SrDNA基因的间隔序列,由ITS1区、5.8S基因、ITS2区组成.内转录区ITS1和ITS2区作为非编码区,承受的选择压力小,变化相对较大,而核糖体DNA中的5.8S基因在大多数生物中趋于保守,物种间变化小,被广泛应用于系统分类鉴定的研究.虽然人们越来越多地应用ITS序列鉴定物种,但仍没有运用ITS序列鉴定竹亚科不同物种的研究.本研究利用GenBank公布的ITS序列及本试验测得的ITS序列进行比较分析,实现准确而快速的鉴定.

  • 本文所用的ITS序列共76条,其中包括GenBank序列14条,试验所得的序列共62条.材料采摘于重庆市梁平县竹博园和重庆茶山竹海景区.材料为竹类植物的叶片,叶片采下后用硅胶保存(慈竹属:1种;刚竹属:37种;箬竹属:2种;唐竹属:2种;矢竹属:3种;大明竹属:1种;赤竹属:5种;巴山木竹属:1种;倭竹属:3种;短穗竹属:2种;簕竹属:2种;酸竹属:2种;少穗竹属:1种).拉丁名、属名依据中国植物志.

  • 本次试验的具体步骤参照张汉尧等[10]的改良CTAB方法.取样品叶片0.05 g,加入2%PVP和2%巯基乙醇在研钵中用液氮磨碎,转入1.5 mL离心管中;加入900 μL 2×CTAB提取缓冲液,混匀后置于65 ℃水浴锅中保温1 h,其间轻轻摇动几次;冷却至室温,加入600 μL 24: 1的氯仿-异戊醇,颠倒混匀,12 000 r/min离心10 min;取上清液,加入2/3体积冰冷的异丙醇,轻微摇匀,-20 ℃放置30 min以上;12 000 r/min离心10 min,倒掉上清液;用70%乙醇洗沉淀2次,100%乙醇洗1次;室温下晾干DNA,20 min左右,加灭菌蒸馏水溶解,-4 ℃低温保存备用.

  • PCR扩增选用ITS引物,ITS上游引物ITS2的序列为5'-AGAAGTCGTAACAAGGTTTCCGTAGG-3',下游引物ITS4的序列为5'-TCCTCCGCTTATTGATATGC-5'[11].反应体系25 μL包括:PCRMax 12.5 μL;正反引物(10 mmoL/L)各1.0 μL;模板DNA 2 μL;用ddH2O补充至25 μL.反应条件:98 ℃预变性2 min;98 ℃变性10 s,55 ℃退火5 s,72 ℃延伸15 s,40个循环;最后72 ℃延伸5 min;-4 ℃低温保存.用1%琼脂糖电泳检测PCR扩增情况,得到的产物送上海华大科技有限责任公司进行序列纯化及正反双向测序.

  • 试验所得的DNA序列与GenBank数据库中下载的序列利用Clustal X进行对比,并辅以人工校正,去除引物序列及测序质量较差的序列,得到可供分析的450 bp长度的ITS序列;然后利用MEGA6.06分析不同竹种序列间的变异频率,计算各样品的种内、种间距离;最后采用K2P模型进行遗传距离分析并构建NJ(Neighbor-Joining)距离树[12],利用Bootstrap(1 000次重复)检验各分支的支持率.

  • 竹亚科各竹种序列经Clustal X比对后长度为450 bp,分析其各样品ITS序列长度、GC含量(表 1).

  • 基于K2P模型计算遗传距离,对1-76号样品进行分组,见表 1.结果显示,种内遗传距离为0~3.907,平均遗传距离为0.370;种间遗传距离为0~4.394,平均遗传距离为2.287.种间变异明显大于种内变异,符合条形码种间变异大、种内变异小的要求,证明ITS序列能够准确区分竹亚科的不同竹种(图 1).

  • 利用MEGA6.06分析软件的K-2P距离构建NJ(Neighbor-Joining)距离树(图 2),拓扑结构的可靠性用1 000次重复的自展检验(Bootstrap analysis)来评估,分支支持率低于50%的略去.

    从NJ树可看出,慈竹Neosinocalamus affinis的序列(1,2)聚为一支,支持率为96%;鹅毛竹Shibataea chinensis的序列(25,26)聚为一支,支持率为81%;红后竹Phyllostachys rubicunda的序列(29,30)聚为一支,支持率为99%;髙节竹Phyllostachys prominens的序列(31,32)聚为一支,支持率为74%;安吉水胖竹Phyllostachys canvava的序列(35,36)聚为一支,支持率为99%;罗汉竹Bambusa ventricosa的序列(37,38)聚为一支,支持率为99%;红壳雷竹Phyllostachys incarnata的序列(39,40)聚为一支,支持率为99%;黄槽斑竹Phyllostachys bambusoides的序列(41,42)聚为一支,支持率为99%;实肚竹Phyllostachys nidularia的序列(43,44)聚为一支,支持率为92%;黎竹Acidosasa venusta的序列(45,46)聚为一支,支持率为99%;金丝毛竹Phyllostachys heterocycla的序列(47,48)聚为一支,支持率为92%;斗竹Oligostachyum spongiosum的序列(49,50)聚为一支,支持率为87%;黄古竹Phyllostachys angusta的序列(51,52)聚为一支,支持率为69%;黄竿乌哺鸡竹Phyllostachys vivax的序列(53,54)聚为一支,支持率为99%;斑苦竹Phyllostachys maculates的序列(55,56)聚为一支,支持率为99%;金竹Phyllostachys sulphurea的序列(57,58)聚为一支,支持率为98%;寿竹Phyllostachys bambusoides的序列(59,60)聚为一支,支持率为99%;淡竹红哺鸡竹Phyllostachys iridescens的序列(63,64)聚为一支,支持率为99%;狭叶倭竹Shibataea lanceifolia的序列(65,66)聚为一支,支持率为85%;紫竹Phyllostachys nigra的序列(67,68)聚为一支,支持率为99%;无毛翠竹Sasa pygmaea的序列(69,70)聚为一支,支持率为99%;铺地竹Sasa argenteistriatus的序列(71,72)聚为一支,支持率为99%;黄槽石绿竹Phyllostachys arcana的序列(73,74)聚为一支,支持率为99%;托竹Pseudosasa cantori的序列(75,76)聚为一支,支持率为99%.水竹Phyllostachys heteroclada的序列(3,4)、篌竹Phyllostachys nidularia的序列(5,6)、曙筋矢竹Pseudosasa japonica的序列(15,16)与毛金竹Phyllostachys nigra的序列(19,20)聚为一支,支持率为57%;菲白竹Sasa fortunei的序列(21,22)与巴山木竹Bashania fargesii(23)聚为一支,支持率为64%.早竹Phyllostachys praecox的序列(33,34)与安吉水胖竹(35,36)聚为一支,支持率为99%.但巴山箬竹Indocalamus bashanensis(7,8)、阔叶箬竹Indocalamus latifolius (9,10)、晾衫竹Sinobambusa intermedia(11,12)、红舌唐竹Sinobambusa rubroligula (13,14)、秋竹Pleioblastus oleosus(17,18)、巴山木竹Bashania fargesii(23,24)、短穗竹Brachystachyum densiflorum(27,28)没有聚为一支,种内遗传距离较远.

  • DNA条形码技术从分子水平对物种进行鉴定,具有准确性高、高通量、操作简便等特点,避免了形态学上的误差,是现代生物分类的发展方向之一.理想的DNA条形码应该具备明显的种间差异,同时种内差异要足够小,并且能够使用单引物对其进行扩增,通过双向测序得到高质量的序列[11].在竹亚科的研究中常见的核DNA片段主要是ITS,ITS以点突变为主,变异位点相互独立,适合于种或种下水平的分析,更重要的是通过两旁rDNA保守序列上的通用引物,可对很广范围的种类进行PCR扩增和测序,作为物种分类的通用标记[12],该核片段的应化适度提高了一些竹种间系统发育关系的分辨力.本研究结果表明,核基因ITS序列具有较好的PCR扩增效率和测序成功率,同时具有较大的种间变异和较小的种内变异,在样本量较大的情况下,其物种鉴定成功率达到81.6%,故ITS序列可用于竹类资源的物种鉴定研究.但研究表明这些核基因在竹子中均不是单拷贝[13]. Song等[14]经过分析发现,一些竹种的ITS序列出现假基因化,致使拷贝间的序列差异明显,影响了系统发育关系的正确构建.另外,杂种存在也是分类混乱不可忽视的一个原因,因为竹类植物具有其特殊的生理与生态特性[12],在已探讨的竹类杂交亲和力试验中,同属不同种的竹子间杂交亲和力较强,部分不同属但生态特性相似的竹子间杂交亲和力也较强[15].竹类植物很少开花,由于其特殊的分布方式和繁殖方法,这些杂交竹种在外观上很难分辨,仅靠营养器官不足以对其进行准确地分辨,对于竹亚科这样一类经历了快速分化、序列分化水平程度低的类群,可能仍然需要结合大量核基因序列进行佐证[16].研究证明,通过増加DNA序列的取样量可提高对类群关系的分辨力[17].

    基于DNA序列差异的分析被认为是最直接的阐明类群间系统关系的方法.但由于竹子过长的世代周期和快速的物种分化导致一些种属内序列分化程度不高,试验难以得到竹类植物族间、属间一致的演化关系和良好的拓扑支持率,值得进一步研究.

参考文献 (17)

目录

/

返回文章
返回