-
设C1和C2分别为Hilbert空间H1和H2的非空闭凸子集,其范数和内积分别表示为‖.‖和〈. , .〉.设F:C1×C1→
$ \mathbb{R} $ 为二元泛函,f:C1→H1为非线性映象,求一点x*∈C1,使得称(1)式为混合均衡问题,解集表示为MEP(H1,F,f).如果f=0,(1)式将退化为均衡问题,其解集表示为EP(H1,F);如果F=0,(1)式将退化为经典的变分不等式问题[1-2].
设fi:C1→H1为非线性映象(i=1,2,…,N),求一点x*∈C1,使得
其中ai∈(0,1)且
$ \sum\limits_{i=1}^{N} $ ai=1.称(2)式为改进的混合均衡问题,这是混合均衡问题的一种重要的推广形式,也是解决复杂经济系统的有力工具[3-9].在此基础上,本文介绍一个改进的分层混合均衡问题:设A:H1→H2为有界线性算子,G:C2×C2→
$ \mathbb{R} $ 为二元泛函,且gi:C2→H2为非线性映象(i=1,2,…,N),求一点x*∈C1,使得其中ai,bi∈(0,1),且
$ \sum\limits_{i=1}^{N} $ ai=1,$ \sum\limits_{i=1}^{N} $ bi=1.分层混合均衡问题(3)的解集记为本文的目的是建立关于改进的混合均衡问题(2)和分层混合均衡问题(3)的解与不动点问题的等价关系,为进一步研究分层混合均衡问题的数值方法提供有效的理论基础和预解算子.
设C为Hilbert空间H的一个非空闭凸子集,如果T:C→C为非线性映象,由文献[10]可知,如果T:C→C是非扩张映象,则T满足不等式
以Fix(T)表示T的不动点集,即
σ-强单调映象和η-逆强单调映象的定义同文献[2].同时,假设F:C×C→
$ \mathbb{R} $ 满足下列条件:(ⅰ) F(x,x)=0,∀x∈C;
(ⅱ) F是单调映象,即F(x,y)+F(y,x)≤0,∀x,y∈C,且仅当x=y时,F(x,y)+F(y,x)=0;
(ⅲ)
$ \underset{t\to 0}{\mathop{\text{lim}}}\, $ F(tz+(1-t)x,y)≤F(x,y),∀x,y,z∈C;(ⅳ)对∀x∈C,y|→F(x,y)是凸的且下半连续的.
引理1[1-2] 设F:C×C→
$ \mathbb{R} $ 满足条件(ⅰ)-(ⅳ).对∀x∈H,存在z∈C使得TrF:H→C满足其中r>0,则下列结论成立:
(a) TrF是单值的,且‖TrF(x)-TrF(y)‖2≤〈TrF(x)-TrF(y),x-y〉,∀x,y∈H;
(b) EP(H,F)是闭凸的,且EP(H,F)=Fix(TrF).
定理1 设C1为Hilbert空间H1的非空闭凸子集,F:C1×C1→
$ \mathbb{R} $ 为二元泛函并满足条件(ⅰ)-(ⅳ),且fi:C1→H1为ηi-逆强单调映象(i=1,2,…,N).如果r∈(0,2η),且η=$ \underset{1\le i\le N}{\mathop{\text{min}}} $ {ηi},则(2)式的解集证 由引理1,不难证明
不放设x0∈MEP(H1,F,
$ \sum\limits_{i=1}^{N} $ aifi),x*∈$ \bigcap\limits_{i=1}^{N} $ MEP(H1,F,fi),由引理1可得:利用TrF的非扩张性和fi的η-逆强单调性得
整理得
因为r∈(0,2η),所以
另一方面,由于x0和x*都是(2)式的解,则:
在(7)式和(8)式中分别取x=x*和x=x0,得:
将(9)式和(10)式相加,并结合(6)式,得
同时,结合F的单调性(ⅱ),进一步得
由条件(ⅱ)和(11)式得x0=x*,即x0∈
$ \bigcap\limits_{i=1}^{N} $ Fix(TrF(I-rfi)).因此,式(4)成立.定理2 设C1和C2为Hilbert空间H1和H2的非空闭凸子集,F:C1×C1→
$ \mathbb{R} $ 和G:C2×C2→$ \mathbb{R} $ 为二元泛函并满足条件(ⅰ)-(ⅳ).设fi:C1→H1为ηi-逆强单调映象,gi:C2→H2为μi-逆强单调映象(i=1,2,…,N).如果r∈(0,2ρ),且ρ=$ \underset{1\le i\le N}{\mathop{\text{min}}} $ {ηi,μi},则x*∈Ω的充分必要条件是证 必要性 记f=
$ \sum\limits_{i=1}^{N} $ aifi,g=$ \sum\limits_{i=1}^{N} $ bigi,如果x*∈Ω,即x*∈MEP(H1,F,f)且Ax*∈MEP(H2,G,g).由引理1可知x*∈Fix(TrF(I-rf))且Ax*∈Fix(TrG(I-rg)),进一步得充分性 设存在q∈Ω,则由必要性的证明过程可知
由(12)式和(13)式,并利用TrF(I-rf)的非扩张性,得
又因为
结合(13)式,得
由(15)式得
结合(12)式进一步得
因此,x*∈Ω.
The Equivalence of Split Mixed Equilibrium Problems and Fixed Point Problems
-
摘要: 在Hilbert空间中,介绍了一类改进的混合均衡问题,并在适当条件下研究了混合均衡问题与不动点问题的等价关系,进一步建立了关于分层混合均衡问题解的一个充分必要条件.Abstract: In this paper, a class of modified mixed equilibrium problems is introduced in Hilbert space. The equivalence relation between the mixed equilibrium problems and a fixed point problem is studied under some suitable conditions. Moreover, a sufficient and necessary condition for the solution of modified split mixed equilibrium problems is established.
-
Key words:
- split mixed equilibrium problem /
- fixed point /
- equivalence relation /
- Hilbert space .
-
-
[1] 闻道君.广义平衡问题和渐近严格伪压缩映象的粘滞-投影方法[J].系统科学与数学, 2014, 34(6):693-702. doi: http://www.cnki.com.cn/Article/CJFDTotal-SCSD201502021.htm [2] doi: https://www.hindawi.com/journals/aaa/2013/737590/ KAZMI K R, RIZVI S H. A Hybrid Extragradient Method for Approximating the Common Solutions of a Variational Inequality, a System of Variational Lnequalities, a Mixed Equilibrium Problem and a Fixed Point Problem[J]. Appl Math Comput, 2012, 218(2):5439-5452. [3] KONNOV I V, VOLOTSKAYA E O. Mixed Variational Inequalities and Economics Equilibrium Problems[J]. J Appl Math, 2002, 2(6):289-314. doi: 10.1155/S1110757X02106012 [4] doi: https://link.springer.com/article/10.1186/1687-1812-2014-209 KHUANGSATUNG W, KANGTUNYAKARN A. Algorithm of a New Variational Inclusion Problem and Strictly Pseudononspreading Mapping with Application[J]. Fixed Point Theory Appl, 2014(1):1-27. [5] TANG G, ZHU M, LIU H. A New Extragradient-Type Method for Mixed Variational Inequalities[J]. Operations Research Letters, 2015, 43(6):567-572. doi: 10.1016/j.orl.2015.08.009 [6] 徐洁, 张俊容, 刘佳.求解一类广义均衡问题的交替方向法[J].西南大学学报(自然科学版), 2016, 38(5):114-118. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201605019&flag=1 [7] doi: https://www.sciencedirect.com/science/article/abs/pii/S0096300315300321 JEONG J U. Generalized Viscosity Approximation Methods for Mixed Equilibrium Problems and Fixed Point Problems[J]. Appl Math Comput, 2016, 283:168-180. [8] 闻道君.关于伪单调平衡问题和不动点问题的粘滞-次梯度方法[J].数学进展, 2017, 46(2):303-312. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-SHDZ201005011.htm [9] doi: https://dl.acm.org/citation.cfm?id=3177993 KAZMI K R, REHAN A, MOHD F. Krasnoselski-Mann Type Iterative Method for Hierarchical Fixed Point Problem and Split Mixed Equilibrium Problem[J]. Numer Algor, 2017(4):1-20. [10] CROMBEZ G. A Hierarchical Presentation of Operators with Fixed Points on Hilbert Spaces[J]. Numer Funct Anal Optim, 2006, 27(3-4):259-277. doi: 10.1080/01630560600569957 -
计量
- 文章访问数: 978
- HTML全文浏览数: 680
- PDF下载数: 96
- 施引文献: 0