-
本文所考虑的群都为有限群.
众所周知,有限群研究的根本问题就是确定有限群的结构.正规子群与有限群的结构有着非常紧密的联系,而正规化子为子群正规性的一种度量,所以很多群论学家利用某些子群的正规化子研究有限群的结构.例如:文献[1]利用p-子群的正规化子给出了一个群G为p-幂零的判断准则,即群G为p-幂零群当且仅当群G的每一个p-子群的正规化子为p-幂零群;文献[2]证明了一个群幂零当且仅当群G的每个Sylow子群的正规化子幂零;文献[3]给出了一个非常好的幂零群的判断准则,一个群幂零当且仅当对每个素因子p,都有Sylow p-子群的正规化子p-幂零;文献[4]研究了具有极大正规化子的有限群.另外,文献[5]研究了非正规子群的正规化子极大的有限非可解群,并得到这类群的结构,结论如下:
设G为非可解群.若子群H满足条件:
(a) H非次正规;(b) H为p-子群或者为{p,q}-子群,其中p,q互素,NG(H)为G的极大子群.则G=K×S,其中K≈PSL(2,13)或者K≈SL(2,13),S为交换群,群K的阶和群S的阶互素.
反之,如果G=K×S,其中K,S如上面所述,那么G的每个非正规子群的正规化子均为G的极大子群.
受以上结果的启发,本文将研究两类群.一类为阶被素数p整除的非正规循环p-子群的正规化子皆极大的有限群,为方便我们把这类群叫作NCPM-群.文献[6-7]研究了非正规循环子群的正规化子皆极大的有限群,我们称这类群为NCM-群.首先,我们给出两个例子说明并非所有的NCPM-群都是NCM-群.
例1 如果
$G = \left( {\left\langle a \right\rangle \times \left\langle b \right\rangle \times \left\langle c \right\rangle \times \left\langle d \right\rangle \times \left\langle e \right\rangle } \right) \rtimes\left\langle f \right\rangle $ ,其中$ a, b, c, d$ 均为2阶元,e为7阶元,f为3阶元,且有${a^f} = ab, {b^f} = a, {\rm{ }}{c^f} = cd, {d^f} = c, {e^f} = {e^2} $ ,那么群G为NCPM-群但非NCM-群.证 容易验证群G为NCPM-群.另一方面,
$ {N_G}\left( {\left\langle f \right\rangle } \right) = \left\langle f \right\rangle $ 且$ \left\langle {a, f} \right\rangle = \left( {\left\langle a \right\rangle \times \left\langle b \right\rangle } \right) \rtimes\left\langle f \right\rangle $ 为群G的真子群.所以${N_G}\left( {\left\langle f \right\rangle } \right) $ 不是群G的极大子群,进一步可得G非NCM-群.例2 G=PSL(2,11)为NCPM-群但非NCM-群.
证 易知,对群G的每个偶阶元x,都存在G的子群S,满足x属于S且同构于C6.因为NG(S)同构于D12,而D12为群G的极大子群.故G为NCPM-群.另一方面,存在循环子群U同构于C5,且NG(U)同构于D10.由于D10不是群G的极大子群,我们可知群G不是NCM-群.
另外一类群,我们研究非正规p-子群和{p,q}-子群的正规化子均极大的有限群.文献[5]给出了满足条件的非可解群的情形,所以本文只考虑满足条件的可解群,为方便我们把这类群叫作NHM-群,我们得到了这类群的一些性质.类似的文献还有很多,可参见文献[8-12].文中的符号和术语是标准的,可参见文献[13].
Two Finite Solvable Groups in Which the Normalizer of Some Non-Normal Subgroups is Maximal
-
摘要: 子群的正规性和有限群的结构有密切的关系,而正规化子作为子群正规性的一种度量对有限群结构的影响自然也很大.极大子群是有限群的一类重要子群.利用某些子群的正规化子的极大性研究有限群的结构.具体研究了群G的阶被p整除的非正规循环子群的正规化子皆极大的有限可解群,以及非正规p-子群和{p,q}-子群的正规化子均极大的有限可解群.得到这两类群的一些性质,并对这两类群的结构给出了刻画.Abstract: The normality of subgroups is closely related to the structure of finite groups, and the normalizer of subgroups, which is a measure of the normality of subgroups, has a significant influence on their structure. On the other hand, the maximal subgroup is an important kind of subgroup of finite groups. So it is reasonable to investigate the structure of a group by using normalizers of some kind of subgroups. In this paper, we study the solvable groups in which the normalizer of cyclic subgroups whose order is divided by p is maximal in G. We also study the solvable groups in which every non-normal p-subgroup and {p, q}-subgroup have a maximal normalizer in G. Some good properties are given for the above two types of group, and we also describe the structure of the two types of group.
-
Key words:
- maximal subgroup /
- normal subgroup /
- normalizer .
-
[1] HUPPERT B. Endliche Gruppen Ⅰ[M]. Berlin: Springer-Verlag, 1967. [2] BIANCHI M, MAURI A G B, HAUCK P. On Finite Groups with Nilpotent Sylow-Normalizers[J]. Archiv der Mathematik, 1986, 47(3):193-197. doi: 10.1007/BF01191993 [3] BALLESTER-BOLINCHES A, SHEMETKOV L A. On Normalizers of Sylow Subgroups in Finite Groups[J]. Siberian Mathematical Journal, 1999, 40(1):1-2. doi: 10.1007/BF02674284 [4] 蹇祥, 吕恒.具有极大正规化子的有限群[J].西南大学学报(自然科学版), 2016, 38(12):56-60. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201612009&flag=1 [5] doi: http://d.old.wanfangdata.com.cn/Periodical/gdjyxyxb201603007 MANN A. Finite Groups with Maximal Normalizers[J]. Illinois J Math, 1968, 12:67-75. [6] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=29097acf4b5d20a82fba6d63c2f312e3 CAO J J, GUO X Y. Finite Solvable Groups in Which the Normalizer of Every Non-Normal Cyclic Subgroup is Maximal[J]. Journal Group Theory, 2014, 17(4):671-687. [7] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=29097acf4b5d20a82fba6d63c2f312e3 CAO J J, GUO X Y. Finite Non-Solvable Groups in Which the Normalizer of Every Non-Normal Cyclic Subgroup is Maximal[J]. Commun Algebra, 2018, 46(1):325-334. [8] doi: http://link.springer.com/article/10.1007/BF01146573 KOSVINTSEV L F. Finite Groups with Maximal Element Centralizers[J]. Matematicheskie Zametki, 1973, 13(4):577-580. [9] doi: http://link.springer.com/article/10.1007/BF01158312 ANTONOV V A. Locally Finite Groups with Maximal Centralizers of Element[J]. Matematicheskie Zametki, 1991, 49(3):145-146. [10] ORMEROD E A. Finite p-Groups in Which Every Cyclic Subgroup is 2-Subnormal[J]. Glasg Math J, 2002, 44:443-453. doi: 10.1017/S0017089502030094 [11] PARMEGGIANI G. On Finite p-Groups of Odd Order with Many Subgroups 2-Subnormal[J]. Comm Algebra, 1996, 24(8):2707-2719. doi: 10.1080/00927879608542651 [12] ZHANG J P. Sylow Numbers of Finite Groups[J]. J Algebra, 1995, 176(1):111-123. doi: 10.1006/jabr.1995.1235 [13] 徐明曜.有限群导引(上册)[M].北京:科学出版社, 1999.
计量
- 文章访问数: 788
- HTML全文浏览数: 638
- PDF下载数: 100
- 施引文献: 0