-
三峡工程蓄水运行之后,库区水位每年在145~175 m之间变化,形成新的消落带[1].消落带特殊的水文变化使库区许多植物不适应新生境而难以生存,原有植被逐渐消亡,引起了严重的环境问题[2],对植被的恢复和重建是消落带生态系统恢复和保护的重点,植被重建对提高消落带生态系统适应能力也具有重要意义[3].此外,对三峡库区段的多目标地球化学调查结果显示,镉(Cd,cadmium)是三峡库区表层土壤中污染最严重的重金属元素[4],无Cd污染区面积仅52.12%,存在区域性轻度污染(0.2~0.6 mg/kg)及点状中度(0.6~1 mg/kg)以上污染,高Cd异常地区自然土壤中Cd质量分数达到8.5 mg/kg[5-6]. Cd是一种毒性很强的非必需元素[7],由于其较高的风险评估值和潜在的不良生物学效应[8],三峡库区Cd污染状况逐渐引起研究者的重视[9-10].植物修复技术是通过利用适应性好、抗逆性强的植物吸收、分解、转化或固定土壤中的重金属,以此降低污染物的浓度,提高土壤的安全性.具有适用性广、经济美观的优点[11, 13].在对三峡库区消落带进行植被重建的同时,联合重金属植物修复将达到事半功倍的效果.前期研究结果发现,秋华柳(Salix variegata)作为杨柳科(Salicaceae)柳属(Salix L.)的耐水淹植物在水淹条件下仍对重金属Cd具有较好的富集能力,在消落带植被重建及Cd污染土壤的治理中具有较大的应用潜力[14-15].
在三峡库区消落带水体—土壤—植被长期的相互作用过程中,土壤物理和化学性质将不断发生变化,尤其是土壤的pH值、有机质和营养元素的变化将直接影响着秋华柳的生长发育状况,并进而影响到对Cd污染土壤的修复效率[16-17].土壤pH值会强烈地影响着土壤中的金属尤其是土壤溶液中金属的溶解和形态的形成,在决定金属形态、矿物表面溶解度、迁移和重金属生物利用度中起着重要作用[18-19].土壤有机质是土壤与植物养分循环的中心,同时,在以可交换态形式固定重金属等方面起着主要作用[20].氮、磷和钾是植物生长必需的营养元素,土壤对植物养分的供应直接影响着植物的生长,继而影响植物对Cd污染土壤的修复效率[21-23].在植物修复工程中,尤其在水淹环境下,为了提高秋华柳对土壤Cd的清除效果,防止枯枝落叶的腐烂对水体和土壤造成二次污染,有学者建议在每年水淹前对其地上部分进行收割[15].但在通过收获秋华柳地上部分去除土壤中Cd的同时,土壤中经植物吸收的养分也会被带走.同时,水淹也将对土壤中氮、磷、钾元素的赋存造成影响,因此,在水淹环境中,利用秋华柳修复Cd污染土壤时必须关注土壤营养元素变化的问题.
目前,有关秋华柳在水淹条件下修复Cd污染土壤的研究主要集中于秋华柳富集Cd能力、吸收转运、富集机理及其应用潜力方面[14-15, 24],但水淹条件下,秋华柳的种植会使土壤pH值、有机质和营养元素质量分数发生怎样的变化,是否会对秋华柳的生长及修复效率产生负面影响尚不清楚.本研究通过模拟水淹及Cd污染环境,探究种植秋华柳后土壤化学性质的变化及其影响,以期为消落带Cd污染土壤修复效率的提高提供理论参考依据.
Effect of Salix variegata on the Chemical Properties of Cd-Contaminated Soils Under Flooding
-
摘要: 为探究秋华柳(Salix variegata Franch.)在消落带水淹环境中对Cd污染土壤化学性质的影响,设置无镉处理组(Cd0)和镉浓度为2 mg/kg的镉处理组(Cd2),水分设置为正常供水组及土壤表面以上5 cm水淹组,所有处理组包括秋华柳种植组和无植物组.结果表明:1)秋华柳种植及水分处理均显著降低了土壤的pH值,使土壤酸碱度趋向于中性.2)所有处理及其交互作用未对土壤有机质质量分数表现出显著影响.3)秋华柳种植、水分处理及其交互作用极显著影响了土壤全氮质量分数;植物处理以及植物与Cd的交互作用显著影响土壤全磷质量分数;土壤全钾质量分数受到Cd处理、植物与水分以及水分与Cd处理之间交互作用的影响显著.水淹条件下种植秋华柳后,其土壤全氮质量分数为正常供水条件下裸地的79%;在Cd污染环境中,种植秋华柳使土壤全磷质量分数降低了15%,水分与植物的联合处理使全钾质量分数降低21%.4)与裸地正常供水组相比,水淹条件下秋华柳种植显著提高了土壤碱解氮质量分数;土壤速效磷质量分数仅受到Cd处理的影响,植物和水分处理未对土壤速效磷质量分数形成显著性影响;在无Cd环境中,与正常供水土壤相比,水淹显著降低了土壤速效磷的质量分数.研究表明,水淹条件下,秋华柳的种植显著降低土壤pH值,将对土壤中Cd离子形态产生明显影响,有利于植物对Cd的吸收.土壤营养元素的潜在供应能力有所降低,供应容量与供应强度随元素种类的变化以及外界环境的影响而表现出一定的差异性.因此,建议在秋华柳修复消落带Cd污染土壤的过程中,严格监控土壤中营养元素的质量分数,在必要的时候可在每年退水期适当施肥以促进秋华柳的生长,从而保证更好的植物修复效果.Abstract: To explore the effects of Salix variegata on the pH, organic matter and nutrient contents of Cd-contaminated soils under flooding, multifactor experimental treatments were applied under two planting levels, and two moisture and two Cd concentration treatments. The two moisture treatments were control (well-watered condition) and flooding (flooding 5 cm above soil surface). Two levels of Cd addition were implemented:control (Cd0, 0 mg/kg) and Cd (Cd2, 2 mg/kg). Each treatment involved a planting group and a non-planting group of S. variegata. Soil pH significantly decreased under the condition of S. variegata planting and flooding, which tended to be neutral. All the three treatment factors and their interaction showed no significant influence on the organic matter content in the soil. S. variegata planting, flooding and their interaction significantly affected soil total N content. S. variegata planting, Cd and their interaction significantly influenced soil total P content. S. variegata planting, Cd and flooding and the interaction between planting and Cd significantly affected soil total K content. Soil TN content under the planting and flooding condition was 79% of the treatment of non-planting with well-watered condition. Under the condition of Cd contamination, S. variegata planting reduced the TP content of the soil by 15%, and the combination of S. variegata planting and flooding reduced TK content of the soil by 21%. Compared with the treatment of no S. variegata planting with well-watered condition, S. variegata planting significantly increased the content of soil alkali hydrolysable under flooding. Soil available P content was influenced by Cd stress and not significantly affected by S. variegata planting and flooding. Compared with the well-watered condition, flooding significantly reduced soil AP content in a Cd-free environment. The results indicated that the pH value of soil was significantly decreased under the conditions of S. variegata planting and flooding, which would have a significant effect on the Cd bioactivity in the soil, which was beneficial to plant Cd uptake. The potential supply capacity of soil nutrient elements was decreased, and the supply capacity and supply intensity showed some differences with the change of element types and the influence of external environment. Therefore, it is suggested that the contents of nutrient elements in the soil should be strictly monitored in the process of the phytoremediation for Cd-contaminated soil, and fertilizers should be applied properly in the de-submergence period to promote the growth of S. variegata, thus ensuring a better effect for phytoremediation of the Cd-contaminated soil.
-
表 1 供试土壤基本化学性质
pH值 有机质/
(g·kg-1)全氮/
(g·kg-1)全磷/
(g·kg-1)全钾/
(g·kg-1)碱解氮/
(mg·kg-1)有效磷/
(mg·kg-1)速效钾/
(mg·kg-1)总镉/
(mg·kg-1)7.83 15.23 0.99 0.78 12.21 81.27 11.83 186.27 0.53 表 2 实验设计
Cd浓度处理 植物与水分处理 裸地正常供水组
CK裸地水淹组
FL有植物正常供水组
PCK有植物水淹组
PFLCd0(0 mg·kg-1) CK1 FL1 PCK1 PFL1 Cd2(2 mg·kg-1) CK2 FL2 PCK2 PFL2 表 3 植物、水分以及Cd处理对土壤pH及有机质的影响
指标 植物处理 水分处理 Cd浓度 植物*水分 植物*Cd 水分*Cd 植物*水分*Cd pH ** ** ns ** ns ns ns 有机质 ns ns ns ns ns ns ns 注:*表示p<0.05,**表示p<0.01,差异有统计学意义;ns表示p>0.05,差异无统计学意义. 表 4 植物、水分以及Cd处理对土壤全氮、全磷及全钾的影响
指标 植物处理 水分处理 Cd浓度 植物*水分 植物*Cd 水分*Cd 植物*水分*Cd 全氮 ** ** ns ** ns ns ns 全磷 * ns ns ns * ns ns 全钾 ns ns * * ns * ns 注:*表示p<0.05,**表示p<0.01,差异有统计学意义;ns表示p>0.05,差异无统计学意义. 表 5 植物、水分以及Cd处理对土壤碱解氮、有效磷及速效钾的影响
指标 植物处理 水分处理 Cd处理 植物*水分 植物*Cd 水分*Cd 植物*水分*Cd 碱解氮 * ** ns ns ns ns ns 速效磷 ns ns * ns ns ns ns 速效钾 ns * ns ns ns * * -
[1] 苏维词.三峡库区消落带的生态环境问题及其调控[J].长江科学院院报, 2004, 21(2):32-34, 41. doi: 10.3969/j.issn.1001-5485.2004.02.010 [2] SINGH S, EAPEN S, D'SOUZA S F. Cadmium Accumulation and Its Influence on Lipid Peroxidation and Antioxidative System in an Aquatic Plant, Bacopa monnieri L[J]. Chemosphere, 2006, 62(2):233-246. doi: 10.1016/j.chemosphere.2005.05.017 [3] 鲍玉海, 贺秀斌, 钟荣华, 等.三峡水库消落带植被重建途径及其固土护岸效应[J].水土保持研究, 2014, 21(6):171-174, 180. doi: http://d.old.wanfangdata.com.cn/Periodical/stbcyj201406032 [4] 刘意章, 肖唐付, 宁增平, 等.三峡库区巫山建坪地区土壤镉等重金属分布特征及来源研究[J].环境科学, 2013, 34(6):2390-2398. doi: http://d.old.wanfangdata.com.cn/Periodical/hjkx201306047 [5] 唐将, 王世杰, 付绍红, 等.三峡库区土壤环境质量评价[J].土壤学报, 2008, 45(4):601-607. doi: http://d.old.wanfangdata.com.cn/Periodical/trxb200804004 [6] 王业春, 雷波, 杨三明, 等.三峡库区消落带不同水位高程土壤重金属含量及污染评价[J].环境科学, 2012, 33(2):612-617. doi: http://d.old.wanfangdata.com.cn/Periodical/hjkx201202044 [7] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a571811045fc2737fc1f9ed72e942178 HE Y, RUI H Y, CHEN C, et al. The Role of Roots in the Accumulation and Removal of Cadmium by the Aquatic Plant Hydrilla verticillata[J]. Environmental Science & Pollution Research, 2016, 23(13):13308-13316. [8] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=292fb987c2856c8b9e39c1d0dd899d96 SINGH A, KUMAR C S, AGARWAL A. Effect of Lead and Cadmium on Aquatic Plant Hydrilla verticillata[J]. Journal of Environmental Biology, 2013, 34(6):1027-1031. [9] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4436f9c3011fdb43f91b0dee653797bf PIOTROWSKA A, BAJGUZ A, GODLEWSKA-ZYÍKIEWICZ B, et al. Changes in Growth, Biochemical Components, and Antioxidant Activity in Aquatic Plant Wolffia arrhiza (Lemnaceae) Exposed to Cadmium and Lead[J]. Archives of Environmental Contamination & Toxicology, 2010, 58(3):594-604. [10] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/10934529.2016.1246931 WANG T J, JIN P, LIU X. Characterization of Heavy Metal Contamination in the Soil and Sediment of the Three Gorges Reservoir, China[J]. Environmental Letters, 2017, 52(3):201-209. [11] doi: https://www.sciencedirect.com/science/article/pii/S0147651314005119 ISLAM M S, SAITO T, KURASAKI M. Phytofiltration of Arsenic and Cadmium by Using an Aquatic Plant, Micranthemum umbrosum:Phytotoxicity, Uptake Kinetics, and mechanism[J]. Ecotoxicology & Environmental Safety, 2015, 112:193-200. [12] KOVÁĈIK J, BABULA P, HEDBAVNY J. Comparison of Vascular and Non-Vascular Aquatic Plant as Indicators of Cadmium Toxicity[J]. Chemosphere, 2017, 180:86-92. doi: 10.1016/j.chemosphere.2017.04.002 [13] doi: https://www.cabdirect.org/?target=%2fcabdirect%2fabstract%2f20093247932 MARQUES A P G C, RANGEL A O S S, CASTRO P M L. Remediation of Heavy Metal Contaminated Soils:Phytoremediation as a Potentially Promising Clean-up Technology[J]. Critical Reviews in Environmental Science & Technology, 2009, 39(8):622-654. [14] 曾成城, 陈锦平, 马文超, 等.水淹生境下秋华柳对镉污染土壤研究修复能力[J].生态学报, 2016, 36(13):3978-3986. doi: http://d.old.wanfangdata.com.cn/Periodical/stxb201613014 [15] 陈锦平, 曾成城, 马文超, 等.水淹和非水淹条件下秋华柳扦插苗镉积累特征比较[J].林业科学, 2017, 53(4):166-174. doi: http://d.old.wanfangdata.com.cn/Periodical/lykx201704019 [16] 程瑞梅, 王晓荣, 肖文发, 等.三峡库区消落带水淹初期土壤物理性质及金属含量初探[J].水土保持学报, 2009, 23(5):156-161. doi: 10.3321/j.issn:1009-2242.2009.05.033 [17] 杨予静, 李昌晓, 马朋.三峡水库城区消落带人工草本植被土壤养分含量研究[J].草业学报, 2015, 24(4):1-11. doi: http://d.old.wanfangdata.com.cn/Periodical/caoyexb201504001 [18] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7794bca049fa09d2188bd2963a3d2505 MUEHLBACHOVA G, SIMON T, PECHOVA M. The Availability of Cd, Pb and Zn and Their Relationships with Soil pH and Microbial Biomass in Soils Amended by Natural Clinoptilolite[J]. Plant Soil & Environment, 2005, 51(1):26-33. [19] ZHAO K L, LIU X M, XU J M, et al. Heavy Metal Contaminations in a Soil-Rice System:Identification of Spatial Dependence in Relation to Soil Properties of Paddy Fields[J]. Journal of Hazardous Materials, 2010, 181(1-3):778-787. doi: 10.1016/j.jhazmat.2010.05.081 [20] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cc1cbeaa20a8c02368d83c7989230ae7 BAKEN S, DEGRYSE F, VERHEYEN L, et al. Metal Complexation Properties of Freshwater Dissolved Organic Matter Are Explained by Its Aromaticity and by Anthropogenic Ligands[J]. Environmental Science & Technology, 2011, 45(7):2584-2590. [21] 吴巍, 赵军.植物对氮素吸收利用的研究进展[J].中国农学通报, 2010, 26(13):75-78. doi: http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201013017 [22] 曹翠玲, 李生秀, 苗芳.氮素对植物某些生理生化过程影响的研究进展[J].西北农业大学学报, 1999, 27(4):96-101. doi: 10.3321/j.issn:1671-9387.1999.04.022 [23] 郑炳松, 程晓建, 蒋德安, 等.钾元素对植物光合速率、Rubisco和RCA的影响[J].浙江农林大学学报, 2002, 19(1):104-108. doi: 10.3969/j.issn.2095-0756.2002.01.023 [24] 曾成城, 陈锦平, 魏虹, 等.水淹生境下秋华柳对Cd污染土壤微生物数量及酶活性的影响[J].生态学报, 2017, 37(13):4327-4334. doi: http://d.old.wanfangdata.com.cn/Periodical/stxb201713004 [25] ANDRESEN E, KAPPEL S, STÄRK H, et al. Cadmium Toxicity Investigated at the Physiological and Biophysical Levels Under Environmentally Relevant Conditions Using the Aquatic Model Plant Ceratophyllum Demersum[J]. New Phytologist, 2016, 210(4):1244-1258. doi: 10.1111/nph.13840 [26] 罗毅, 敖亮, 罗财红, 等.三峡库区消落带土壤镉环境风险研究[J].环境科学与管理, 2014, 39(5):180-183. doi: 10.3969/j.issn.1673-1212.2014.05.053 [27] 李昌晓, 钟章成, 刘芸.模拟三峡库区消落带土壤水分变化对落羽杉幼苗光合特性的影响[J].生态学报, 2005, 25(8):1953-1959. doi: 10.3321/j.issn:1000-0933.2005.08.018 [28] 鲍士旦.土壤农化分析[M]. 3版.北京:中国农业出版社, 2000:10-25. [29] 任庆水, 马朋, 李昌晓, 等.三峡库区消落带落羽杉(Taxodium distichum)与柳树(Salix matsudana)人工植被对土壤营养元素含量的影响[J].生态学报, 2016, 36(20):6431-6444. doi: http://d.old.wanfangdata.com.cn/Periodical/stxb201620010 [30] STOUT L M, DODOVA E N, TYSON J F, et al. Phytoprotective Influence of Bacteria on Growth and Cadmium Accumulation in the Aquatic Plant Lemna minor[J]. Water Research, 2010, 44(17):4970-4979. doi: 10.1016/j.watres.2010.07.073 [31] 孙儒泳.基础生态学[M].北京:高等教育出版社, 2002:90-121. [32] 李俊莉, 宋华明.土壤理化性质对重金属行为的影响分析[J].环境科学动态, 2003(1):24-26. doi: 10.3969/j.issn.1673-288X.2003.01.011 [33] 苏静, 王智慧, 李仕伟, 等. pH对酸性紫色土中硝化作用与硝化微生物的影响[J].西南大学学报(自然科学版), 2017, 39(3):142-148. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201703023&flag=1 [34] 张金洋, 王定勇, 石孝洪.三峡水库消落区淹水后土壤性质变化的模拟研究[J].水土保持学报, 2004, 18(6):120-123. doi: 10.3321/j.issn:1009-2242.2004.06.029 [35] 唐罗忠, 生原喜久雄, 户田浩人, 等.湿地林土壤的Fe2+, Eh及pH值的变化[J].生态学报, 2005, 25(1):103-107. doi: 10.3321/j.issn:1000-0933.2005.01.017 [36] 王宝山.植物生理学[M]. 2版.北京:科学出版社, 2007:87-91. [37] 刘媛, 马文超, 张雯, 等.镉胁迫对秋华柳根系活力及其Ca、Mg、Mn、Zn、Fe积累的影响[J].应用生态学报, 2016, 27(4):1109-1115. doi: http://d.old.wanfangdata.com.cn/Periodical/yystxb201604014 [38] doi: https://link.springer.com/article/10.1007/BF00262137 TARAFDAR J C, CLAASSEN N. Organic Phosphorus Compounds as a Phosphorus Source for Higher Plants Through the Activity of Phosphatases Produced by Plant Roots and Microorganisms[J]. Biology & Fertility of Soils, 1988, 5(4):308-312. [39] 赵宽, 周葆华, 马万征, 等.不同环境胁迫对根系分泌有机酸的影响研究进展[J].土壤, 2016, 48(2):235-240. doi: http://d.old.wanfangdata.com.cn/Periodical/tr201602004 [40] doi: http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-s11104-005-4642-9/ WANG A S, ANGLE J S, CHANEY R L, et al. Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens[J]. Plant & Soil, 2006, 281(1):325-337. [41] BADAWY S H, HELAL M I, CHAUDRI A M, et al. Soil Solid-Phase Controls Lead Activity in Soil Solution[J]. Journal of Environmental Quality, 2002, 31(1):162-167. doi: 10.2134/jeq2002.1620 [42] SUKREEYAPONGSE O, HOLM P E, STROBEL B W, et al. pH-Dependent Release of Cadmium, Copper, and Lead from Natural and Sludge-Amended Soils[J]. Journal of Environmental Quality, 2002, 31(6):1901-1909. doi: 10.2134/jeq2002.1901 [43] 杜彩艳, 祖艳群, 李元. pH和有机质对土壤中镉和锌生物有效性影响研究[J].云南农业大学学报, 2005, 20(4):539-543. doi: 10.3969/j.issn.1004-390X.2005.04.018 [44] doi: https://www.cabdirect.org/?target=%2fcabdirect%2fabstract%2f20103316068 BILEN S, ÇELIK A, ALTÍKAT S. Effects of Strip and Full-Width Tillage on Soil Carbon Ⅳ Oxide-Carbon (CO2-C) Fluxes and on Bacterial and Fungal Populations in Sunflower[J]. African Journal of Biotechnology, 2010, 9(38):6312-6319. [45] doi: http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0065-2113(03)81004-0/ SAHRAWAT K L. Organic Matter Accumulation in Submerged Soils[J]. Advances in Agronomy, 2003, 81(3):169-201. [46] 毛文韬, 李堂中, 辜夕容, 等.三峡库区消落带不同高程柳树林地养分特征[J].西南大学学报(自然科学版), 2016, 38(3):119-125. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201603020&flag=1 [47] 赵平, 孙谷畴, 彭少麟.植物氮素营养的生理生态学研究[J].生态科学, 1998(2):37-42. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800539969 [48] FÖRSTNER U, WITTMANN G T W. Metal Pollution in the Aquatic Environment[M]. Berlin:Springer-Verlag, 1979:45-48. [49] KRALOVA M, MASSCHELEYN P H, JR W H P. Redox Potential as an Indicator of Electron Availability for Microbial Activity and Nitrogen Transformations in Aerobic Soil[J]. Zentralblatt Fuer Mikrobiologie, 1992, 147(6):388-399. doi: 10.1016/S0232-4393(11)80348-3 [50] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cd7410cd64f8cb6887241b99c943222d KEMMITT S J, WRIGHT D, GOULDING K W T, et al. pH Regulation of Carbon and Nitrogen Dynamics in Two Agricultural Soils[J]. Soil Biology & Biochemistry, 2006, 38(5):898-911. [51] 陈同斌, 李海翔, 雷梅, 等.植物修复过程中蜈蚣草对土壤养分的吸收动态:5年田间定位试验[J].环境科学学报, 2010(2):402-408. doi: http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201002024 [52] 王林, 周启星, 孙约兵.氮肥和钾肥强化龙葵修复镉污染土壤[J].中国环境科学, 2008, 28(10):915-920. doi: 10.3321/j.issn:1000-6923.2008.10.011