-
不可压缩流体是流体力学中的一个重要问题,广泛用于天气、海洋以及血液循环等方面. Navier-Stokes方程正好为描述这种流体运动规律提供了一种数学模型.近几十年来,很多作者研究了Navier-Stokes方程的有限元解法[1-3].本文考虑的是非定常Navier-Stokes方程的有限元算子分裂算法.算子分裂方法主要思想是在时间上分为若干步,使得不同的算子出现在不同的方程中,从而降低难度.该方法最开始由文献[2-3]提出,已经用于空间离散、有限差分和谱方法中.文献[4]给出的算子分裂方法是将非线性项和不可压缩性项分开处理.本文在文献[4]的基础上给出稳定化的有限元算子分裂算法,该方法主要分为两步:第一步是线性椭圆型问题,可看作是线性化的Burger's问题;第二步是一般的Stokes问题.通过理论推导,给出了速度的误差估计和收敛精度,并用数值实验验证了方法的正确性.相比标准的有限元方法,我们的方法得到的误差估计更小.
The Finite Element Operator Splitting Method for the Incompressible Navier-Stokes Equations
-
摘要: 在连续解的正则性假设条件下,基于亚格子稳定模型和算子分裂方法提出了非定常不可压Navier-Stokes方程的有限元算子分裂算法.其主要思想是:利用算子分裂方法把非线性项和不可压缩项分开,首先求解一个线性化的Burger's问题得到有限元解uhn+1/2,然后再求解一个Stokes问题得到解uhn+1.证明了速度的误差估计关于时间是一阶收敛的,并给出数值实验验证了理论的正确性.
-
关键词:
- 不可压缩流体 /
- Navier-Stokes方程 /
- 有限元 /
- 算子分裂方法 /
- 误差估计
Abstract: Under the regularity assumptions on the continuous solution, we provide a finite element operator splitting method for the simulation of unsteady incompressible Navier-Stokes equations, which is based on the subgrid model. It is a two-step scheme in which the nonlinearity and incompressibility are split into different steps. First, a linear Burger's system is solved, and the solution of the finite element uhn+1/2 is obtained. Then a Stokes problem is solved, and its solution uhn+1 is obtained. We derive the error bound of the approximate velocity which is first-order in time. Numerical experiments have verified the correctness of the theoretical analysis.-
Key words:
- incompressible flow /
- Navier-Stokes equation /
- finite element /
- operator splitting method /
- error analysis .
-
表 1 稳定化的有限元算子分裂算法近似解的误差
h Δt ‖∇u-∇uh‖L2(0,T;L2(Ω)2) 收敛阶 计算时间/s $\frac{1}{{16}} $ $\frac{1}{{100}} $ 0.016 677 - 0.265 $\frac{1}{{32}} $ $\frac{1}{{200}} $ 0.005 894 4 1.500 44 1.652 $\frac{1}{{64}} $ $\frac{1}{{400}} $ 0.002 351 27 1.325 91 10.666 $\frac{1}{{128}} $ $\frac{1}{{800}} $ 0.001 029 7 1.191 22 75.571 $\frac{1}{{256}} $ $\frac{1}{{1600}} $ 0.000 478 311 1.106 2 1 002.16 表 2 有限元算子分裂算法与标准有限元法比较表
ν 标准的有限元方法 有限元算子分裂算法 ‖∇u-∇uh‖L2(0,T;L2(Ω)2) 计算时间/s ‖∇u-∇uh‖L2(0,T;L2(Ω)2) 计算时间/s 1 0.005 601 3 80.262 0.000 204 712 79.797 0.1 0.009 462 24 66.89 0.000 207 468 82.005 0.01 0.010 037 6 81.108 0.000 394 542 82.026 0.001 0.010 643 1 71.778 0.003 376 52 80.38 -
[1] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_math%2f0701341 CHORIN A J. Numerical Solution of the Navier-Stokes Equations[J]. Computational Fluid Mechanics, 1968, 22(104):745-762. [2] GIRAULT V, RAVIART P A. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[M]//Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. New York: Springer-Verlag, 1986. [3] doi: http://d.old.wanfangdata.com.cn/NSTLQK/10.1002-fld.1650071005/ GLOWINSKI R. Finite Element Methods for Incompressible Viscous Flow[J]. Handbook of Numerical Analysis, 2003, 9:3-1176. [4] doi: http://cn.bing.com/academic/profile?id=01887537ca99f6e0a299b83134223d18&encoded=0&v=paper_preview&mkt=zh-cn BLASCO J, CODINA R. Error Estimates for an Operator-Splitting Method for Incompressible Flows[J]. Applied Numerical Mathematics, 2004, 51(1):1-17. [5] QUARTERONI A, SALERI F, VENEZIANI A. Factorization Methods for the Numerical Approximation of Navier-Stokes Equations[J]. Computer Method in Applied Mechanics and Engineering, 2000, 188(1-3):505-526. doi: 10.1016/S0045-7825(99)00192-9 [6] doi: http://d.old.wanfangdata.com.cn/NSTLQK/10.1137-0729004/ SHEN J. On Error Estimates of Projection Methods for Navier-Stokes Equations:First-Order Schemes[J]. SIAM Journal on Numerical Analysis, 1992, 29(1):57-77. [7] GUERMOND J L, QUARTAPELLE L. On the Approximation of the Unsteady Navier-Stokes Equations by Finite Element Projection Methods[J]. Numerische Mathematik, 1998, 80(2):207-238. doi: 10.1007/s002110050366 [8] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=730840d5e9fdf127a1e6ec1c888f65d4 BLASCO J, CODINA R, HUERTA A. A Fractional-Step Method for the Incompressible Navier-Stokes Equations Related to a Predictor-Multicorrector Algorithm[J]. International Journal for Numerical Methods in Fluids, 2015, 28(10):1391-1419. [9] doi: http://cn.bing.com/academic/profile?id=baffa58c056090f7b20cf613029b3333&encoded=0&v=paper_preview&mkt=zh-cn KIM J, MOIN P. Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations[J]. Journal of Computational Physics, 1985, 59(2):308-323. [10] doi: http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0045-7825(82)90054-8/ DONEA J, GIULIANI S, LAVAL H, et al. Finite Element Solution of the Unsteady Navier-Stokes Equations by a Fractional Step Method[J]. Computer Methods in Applied Mechanics and Engineering, 1982, 30(1):53-73. [11] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1515/jnum-2012-0013 HECHT F. New Development in Freefem++[J]. Journal of Numerical Mathematics, 2012, 20(3-4):251-266. [12] 杨晓成, 尚月强. Navier-Stokes方程的回溯两水平有限元变分度尺度方法[J].西南大学学报(自然科学版), 2017, 39(10):47-57. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201710007&flag=1