-
天然酶是一类生物催化剂,可高效、专一催化生化反应,而且反应条件温和.然而,天然酶易变性失活,提纯困难,价格昂贵,储藏和使用不便,成本高,所以模拟酶的研究应运而生.目前已有大量利用卟啉、主体试剂、印迹高分子、膜体系及配合物等作为模拟酶的报道[1].近年来,纳米材料模拟酶的研究引起广泛关注,各种各样的纳米材料,如金属氧化物、金属硫化物、金属纳米微粒及碳材料等均具有模拟酶特性[2].
金属有机框架(MOFs)材料具有良好的孔结构、较大的比表面积等特性,在气体储存、化学催化以及药物传输等方面显示出良好的应用前景[3-4].本研究利用NH2-MIL-101(Fe)作为催化剂,发现它能显著催化H2O2氧化TMB,产生蓝色反应,使体系的吸光度显著增加,表现出过氧化物模拟酶特性,而且在较宽的温度(4~80 ℃)及pH值(2~10)范围内保持其模拟酶活性,据此,结合葡萄糖氧化酶,建立了测定血清中葡萄糖的新方法.
NH2-MIL-101(Fe) Mimetic Peroxidase-Based Determination of Glucose
-
摘要: 研究发现NH2-MIL-101(Fe)金属有机框架材料可催化H2O2氧化3,3,5,5-四甲基联苯胺(TMB)显蓝色,表现出过氧化物模拟酶特性,而且在较宽的温度(4~80℃)及pH值范围(2~10)内保持其模拟酶活性,结合葡萄糖氧化酶,建立了测定葡萄糖的方法.在优化条件下,吸光度与葡萄糖浓度在0.75~50 μmol/L范围内呈现良好的线性关系,对葡萄糖的检出限为0.75 μmol/L.将本法用于血清中葡萄糖的测定,获得满意结果.
-
关键词:
- NH2-MIL-101(Fe) /
- 光度法 /
- 模拟酶 /
- 葡萄糖
Abstract: The material of NH2-MIL-101(Fe) metal-organic framework was found to be able to catalyze the oxidization of 3, 3', 5, 5'-tetramethylbenzidine (TMB) by H2O2 to produce a blue product, showing intrinsic peroxidase-like activity. Furthermore, the NH2-MIL-101(Fe) was found to exhibit good robustness in a wide temperature range from 4 to 80℃ and in a wide pH range from 2 to 10. In a study reported herein, a new method for the detection of glucose was developed when combined with glucose oxidase. Under optimal conditions, the absorbance at 652 nm showed linear response with glucose concentrations in the range from 0.75 μmol/L to 50 μmol/L with a detection limit of 0.75 μmol/L. The proposed method was applied to determine the content of glucose in human serum samples and satisfactory results were obtained.-
Key words:
- NH2-MIL-101(Fe) /
- spectrophotometry /
- mimetic enzyme /
- glucose .
-
表 1 血样中葡萄糖含量的测定结果
样品 本法测得值(n=2)/(mmol·L-1) GOD-PAP法测得值/(mmol·L-1) 1 7.83±0.16 7.8 2 4.58±0.08 4.3 3 5.33±0.17 5.1 -
[1] 刘有芹, 颜芸, 沈含熙.模拟酶的研究与发展[J].化学进展, 2005, 17(6):1067-1073. doi: 10.3321/j.issn:1005-281X.2005.06.017 [2] XIE J, ZHANG X, WANG H, et al. Analytical and Environmental Applications of Nanoparticles as Enzyme Mimetics[J]. TrAC:Trends in Analytical Chemistry, 2012, 39:114-129. doi: 10.1016/j.trac.2012.03.021 [3] LI J R, MA Y G, McCARTHY M C, et al. Carbon Dioxide Capture-Related Gas Adsorption and Separation in Metal-Organic Frameworks[J]. Coordination Chemistry Reviews, 2011, 255(15-16):1791-1823. doi: 10.1016/j.ccr.2011.02.012 [4] doi: http://cn.bing.com/academic/profile?id=4fcb3bc449f038259d428b04407fe0fb&encoded=0&v=paper_preview&mkt=zh-cn BRADSHAW D, GARAI A, HUO J. Metal-Organic Framework Growth at Functional Interfaces:Thin Films and Composites for Diverse Applications[J]. Chemical Society Reviews, 2012, 43(24):2344-2381. [5] BAUER S, SERRE C, DEVIC T, et al. High-Throughput Assisted Rationalization of the Formation of Metal Organic Frameworks in the Iron(Ⅲ) Aminoterephthalate Solvothermal System[J]. Inorganic Chemistry, 2008, 47(17):7568-7576. doi: 10.1021/ic800538r [6] HARTMANN M, FISCHER M. Amino-Functionalized Basic Catalysts with MIL-101 Structure[J]. Microporous and Mesoporous Materials[J]. 2012, 164:38-43. doi: 10.1016/j.micromeso.2012.06.044 [7] TAYLOR-PASHOW K M L, ROCCA J D, XIE Z G, et al. Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal-Organic Frameworks for Imaging and Drug Delivery[J]. Journal of American Chemical Society, 2009, 131(40):14261-14263. doi: 10.1021/ja906198y