-
食物中富含的多种活性物质与其营养价值密切相关,其中包括维生素、微量元素、黄酮、多酚、脂肪酸等多种生物活性成分[1-5],具有降胆固醇、降血压、降血糖等生理功能,近年来被广泛应用于食品加工、保健品、医药及化妆品领域.然而,生物活性物质的不稳定性使其容易受光照、pH、温度等因素的影响而发生氧化作用,导致其物理化学性质发生改变,失去生理活性,降低应用价值.目前,活性物质常用的保护方法有低温贮存、真空包装、避光保存、使用除氧剂和添加抗氧化剂等[4].虽然这些方法能在一定程度上提高其稳定性,但条件可控程度低、合成抗氧化剂的安全性和潜在毒性有待进一步验证.国内外对于活性物质的稳定性研究大多局限于从宏观上探讨其稳定效果,未涉及机理,忽略了对抑制体系物性表征、相互作用及微观构象方面的研究.
微流控是一门研究如何在微米和亚微米尺度下控制微小流体和颗粒的科学.与传统实验室分析方法相比,微流控技术具有样品消耗量小、分析速度快、自动化程度高、微型化、易于集成等优势[6]. Neves等[7]使用MC乳化生产含有生物活性分子的单分散O/W乳液.该技术提供了含有亲水活性分子的水包油(O/W)乳液的配方,制备出具有高生物利用度且容易被人体吸收的O/W乳液,可用作活性分子输送系统的增强剂,也可用于食品中. Bu等[8]采用改进的毛细管微流体装置制备了磁性多孔石墨烯/多壁碳纳米管珠(MPGCBs),改善了它们在液滴中的分散程度并减少固化过程中的聚集.其中,液滴微流体是最有效的技术之一,它提供了对微尺度多种流体的精细控制[9-10].利用这些优势,可以生成具有可控尺寸、单分散性、多样形态和特定功能的工程微粒,并且在生物化学领域中发挥着越来越重要的作用[11-12].
国内外现有的关于微流控的综述文章着重介绍了微流控芯片技术[13-18]及微流控在药物输送[19-22]等方面的相关应用,而对于微流控在活性物质保护方面的介绍较少.本文将从微通道的结构与制备、微液滴的制备、微球形成与优化及活性物质的稳定和保护机制等方面对微流控技术在生物化学研究中的应用进展进行介绍.
On the Progress in the Research of Stability Protection of Active Substances by Microfluidic Technology
-
摘要: 微流控技术因其微型化、自动化、集成化和高通量的特点,被广泛应用于生物化学研究领域.利用微流控技术实现对微通道中的液滴进行精确操控,是制造具有均匀尺寸分布和所需性能的复杂系统的工具,在活性物质的保护与输送领域具有极大的应用潜力.综述了微流控技术在活性物质稳定性保护中的应用进展,并对这一技术的发展前景进行了总结和展望,以期为微流控技术的广泛应用提供有价值的参考.Abstract: Microfluidic technology is widely used in the field of biochemistry research because of its miniaturization, automation, integration and high throughput. The use of microfluidic technology to achieve precise manipulation of droplets in microchannels is a tool for manufacturing complex systems with uniform size distribution and required properties, and has great potential for application in the field of active material protection and delivery. This paper gives a review of the progress in the application of microfluidic technology in the stability protection of active materials and summarizes its development prospect so as to provide a valuable reference for the wide application of microfluidic technology.
-
Key words:
- microfluidic technology /
- microchannel /
- microsphere /
- active substance /
- stability .
-
图 3 使用一步法制备双乳液的双交叉结装置的示意图[41]
-
[1] 郎宇曦, 马岩, 李斌, 等.黄酮类化合物与其他化合物相互作用的研究进展[J].食品科学, 2018, 39(9):258-264. doi: http://d.old.wanfangdata.com.cn/Periodical/spkx201809039 [2] 仇菊, 朱宏, 卢林纲.葡萄籽多酚对糖尿病大鼠的降血糖作用及其机制[J].食品科学, 2018, 39(1):226-231. doi: http://d.old.wanfangdata.com.cn/Periodical/spkx201801034 [3] 矫馨瑶, 李恩惠, 王月华, 等.蓝莓多酚稳定性及热降解动力学研究[J].中国食品学报, 2018, 18(1):81-87. doi: http://d.old.wanfangdata.com.cn/Periodical/zgspxb201801012 [4] doi: http://cn.bing.com/academic/profile?id=b078f650a2d96ccc16dd9ca96ee618bd&encoded=0&v=paper_preview&mkt=zh-cn HALS P A, WANG X L, XIAO Y F. Effects of a Purified Krill Oil Phospholipid Rich in Long-Chain Omega-3 Fatty Acids on Cardiovascular Disease Risk Factors in Non-Human Primates with Naturally Occurring Diabetes Type-2 and Dyslipidemia[J]. Lipids in Health and Disease, 2017, 16(1):11-11. [5] doi: http://cn.bing.com/academic/profile?id=33fb26fcc2f1acad00251944fbb53ab6&encoded=0&v=paper_preview&mkt=zh-cn WERNER K, de GAUDRY D K, TAYLOR L A, et al. Dietary Supplementation with N-3-Fatty Acids in Patients with Pancreatic Cancer and Cachexia:Marine Phospholipids Versus Fish Oil-a Randomized Controlled Doubleblind Trial[J]. Lipids in Health and Disease, 2017, 16(1):104-104. [6] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201502033 LI C, XIAOLIN Z, NING H, et al. Research Progress on Microfluidic Chip of Cell Separation Based on Dielectrophoresis[J]. Anal Chem, 2015, 43(2):300-309. [7] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f51fd3959fe454b8da8dc35555c5ad99 NEVES M A, RIBEIRO H S, KOBAYASHI I, et al. Encapsulation of Lipophilic Bioactive Molecules by Microchannel Emulsification[J]. Food Biophysics, 2008, 3(2):126-131. [8] BU Z P, ZHANG L L, ZHANG Y H, et al. Magnetic Porous Graphene/multi-Walled Carbon Nanotube Beads from Microfluidics:a Flexible and Robust Oil/water Separation Material[J]. RSC Advances, 2017, 7(41):25334-25340. doi: 10.1039/C7RA03910G [9] LEE T Y, CHOI T M, SHIM T S, et al. Microfluidic Production of Multiple Emulsions and Functional Microcapsules[J]. Lab Chip, 2016, 16:3415-3440. doi: 10.1039/C6LC00809G [10] KIM J H, JEON T Y, CHOI T M, et al. Droplet Microfluidics for Producing Functional Microparticles[J]. Langmuir, 2014, 30:1473-1488. doi: 10.1021/la403220p [11] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0acb11357649681d30f541207bb6852c J THIELE, MACROMOL. Polymer Material Design by Microfluidics Inspired by Cell Biology and Cell-Free Biotechnology[J]. Chem Phys, 2017, 218:1600429. [12] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=18f7f7e5ea5cbeb475f4c77e9e842734 HEIDA T, NEUBAUER J W, SEUSS M, et al. Mechanically Defined Microgels by Droplet Microfluidics[J]. Chem Phys, 2017, 218:1600418. [13] CARRASCOSA L G, HUERTAS C S, LECHUGA L M. Prospects of Optical Biosensors for Emerging Label-Free RNA Analysis[J]. Trac-Trends in Analytical Chemistry, 2016, 80:177-189. doi: 10.1016/j.trac.2016.02.018 [14] AVELLA-OLIVER M, PUCHADES R, WACHSMANN-HOGIU S, et al. Label-Free SERS Analysis of Proteins and Exosomes with Large-Scale Substrates from Recordable Compact Disks[J]. Sensors and Actuators B-Chemical, 2017, 252:657-662. doi: 10.1016/j.snb.2017.06.058 [15] ZRIMESK A B, CHIANG N H, MATTEI M, et al. Single-Molecule Chemistry with Surface-and Tip-Enhanced Raman Spectroscopy[J]. Chemical Reviews, 2017, 117(11):7583-7613. doi: 10.1021/acs.chemrev.6b00552 [16] JAHN I J, ZUKOVSKAJA O, ZHENG X S, et al. Surface-Enhanced Raman Spectroscopy and Microfluidic Platforms:Challenges, Solutions and Potential Applications[J]. Analyst, 2017, 142(7):1022-1047. doi: 10.1039/C7AN00118E [17] ZHOU Q T, KIM T. Review of Microfluidic Approaches for Surface-Enhanced Raman Scattering[J]. Sensors and Actuators BChemical, 2016, 227:504-514. doi: 10.1016/j.snb.2015.12.069 [18] 庄琪琛, 宁芮之, 麻远, 等.微流控技术应用于细胞分析的研究进展[J].分析化学, 2016, 44(4):522-532. doi: http://d.old.wanfangdata.com.cn/Periodical/fxhx201604005 [19] 张逢, 高丹, 梁琼麟.微流控技术在生命分析化学中的应用进展[J].分析化学, 2016, 44(12):1942-1949. doi: http://d.old.wanfangdata.com.cn/Periodical/fxhx201612030 [20] 郭希颖, 魏巍, 王坚成, 等.微流控技术在纳米药物输送系统中的应用[J].药学学报, 2017, 52(10):1515-1523. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxxb201710004 [21] 闫嘉航, 赵磊, 申少斐, 等.液滴微流控技术在生物医学中的应用进展[J].分析化学, 2016, 44(4):562-568. doi: http://d.old.wanfangdata.com.cn/Periodical/fxhx201604009 [22] ZHAO C X. Multiphase Flow Microfluidics for the Production of Single or Multiple Emulsions for Drug Delivery[J]. Advanced Drug Delivery Reviews, 2013, 65(11-12):1420-1446. doi: 10.1016/j.addr.2013.05.009 [23] SHIM J U, OLGUIN L F, WHYTE G, et al. Simultaneous Determination of Gene Expression and Enzymatic Activity in Individual Bacterial Cells in Microdroplet Compartments[J]. J Am Chem Soc, 2009, 131(42):15251-15256. doi: 10.1021/ja904823z [24] SCHAERLI Y, HOLLFELDER F. The Potential of Microfluidic Water-in-Oil Droplets in Experimental Biology[J]. Mol Biosyst, 2009, 5(12):1392-1404. doi: 10.1039/b907578j [25] doi: http://d.old.wanfangdata.com.cn/Periodical/sp201110002 TEH S Y, LIN R, HUNG L H, et al. Droplet Microfluidics[J]. Lab Chip, 2008(8):198-220. [26] ZHAO C X, MIDDELBERG A P J. Two-Phase Microfluidic Flows[J]. Chem Eng Sci, 2011, 66(7):1394-1411. doi: 10.1016/j.ces.2010.08.038 [27] WANG K L, JONES T B, RAISANEN A. Dynamic Control of DEP Actuation and Droplet Dispensing[J]. J Micromech Microeng, 2007, 17(1):76-80. doi: 10.1088/0960-1317/17/1/010 [28] doi: http://cn.bing.com/academic/profile?id=3308184f499bd9646cdb226829dce090&encoded=0&v=paper_preview&mkt=zh-cn AHN K, KERBAGE C, HUNT T P, et al. Dielectrophoretic Manipulation of Drops for High-Speed Microfluidic Sorting Devices[J]. Appl Phys Lett, 2006, 88(2):024104-1-024104-3. [29] doi: http://cn.bing.com/academic/profile?id=5facc1580a20319b58bf9ad93a74b1c4&encoded=0&v=paper_preview&mkt=zh-cn NGUYEN N T, TING T H, YAP Y F, et al. Thermally Mediated Droplet Formation in Microchannels[J]. Appl Phys Lett, 2007, 91(8):084102-1-084102-3-0. [30] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_physics%2f0611170 BAROUD C N, DELVILLE J P, GALLAIRE F, et al. Thermocapillary Valve for Droplet Production and Sorting[J]. Phys Rev E, 2007, 75(4):6302-1-6302-5-0. [31] doi: http://cn.bing.com/academic/profile?id=99ed37d5f644ae0b274c701e21f6991b&encoded=0&v=paper_preview&mkt=zh-cn MURSHED S M S, TAN S H, NGUYEN N T, et al. Microdroplet Forma-Tion of Water and Nanofluids in Heat-Induced Microfluidic T-Junction[J]. Microfluid. Nanofluid, 2009(6):253-259. [32] doi: http://cn.bing.com/academic/profile?id=f1b4b63c185caaf4efa3c5e99950190c&encoded=0&v=paper_preview&mkt=zh-cn CORDERO M L, BURNHAM D R, BAROUD C N, et al. Thermocapillary Manipu-Lation of Droplets Using Holographic Beam Shaping:Microfluidic Pin Ball[J]. Appl Phys Lett, 2008, 93(3):034107-1-034107-3. [33] BAROUD C N, de SAINT VINCENT M R, DELVILLE J P. An Optical Toolbox for Total Control of Droplet Microfluidics[J]. Lab Chip, 2007, 7(8):1029-1033. doi: 10.1039/b702472j [34] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=60ed72b38b3a16bb61bcc3fbf3842aa7 TAN S H, NGUYEN N T, YOBAS L, et al. Formation and Manipulation of Ferrofluid Droplets at a Microfluidic T-Junction[J]. J Micromech Microeng, 2010, 20(4):045004-1-045004-10. [35] FOSTER T, DORFMAN K D, DAVIS H T. Giant Biocompatible and Biodegradable PEG-PMCL Vesicles and Microcapsules by Solvent Evaporation from Double Emulsion Droplets[J]. J. Colloid Interface Sci, 2010, 351(1):140-150. doi: 10.1016/j.jcis.2010.05.020 [36] SHUM H C, BANDYOPADHYAY A, BOSE S, et al. Double Emulsion Droplets as Microreactors for Synthesis of Mesoporous Hydroxyapatite[J]. Chem Mater, 2009, 21(22):5548-5555. doi: 10.1021/cm9028935 [37] UTADA A S, LORENCEAU E, LINK D R, et al. Monodis-Perse Double Emulsions Generated from a Microcapillary Device[J]. Science, 2005, 308(5721):537-541. doi: 10.1126/science.1109164 [38] KIM S H, WEITZ D A. One-Step Emulsification of Multiple Concentric Shells with Capillary Microfluidic Devices[J]. Angew Chem Int Ed, 2011, 50(37):8731-8734. doi: 10.1002/anie.201102946 [39] doi: http://cn.bing.com/academic/profile?id=bdf99c9ee209d55ad8b32e51361b0530&encoded=0&v=paper_preview&mkt=zh-cn KIM S H, KIM J W, CHO J C, et al. Double-Emulsion Drops with Ultra-Thin Shells for Capsule Templates[J]. Lab Chip, 2011, 17(18):3162-3166. [40] ABATE A R, KUTSOVSKY M, SEIFFERT S, et al. Synthesis of Monodisperse Microparticles from Non-Newtonian Polymer Solutions with Microfluidic Devices[J]. Adv Mater, 2011, 23(15):1757-1760. doi: 10.1002/adma.201004275 [41] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef24da25f5021a56d7f095e65a417a92 ABATE A R, THIELE J, WEITZ D A. One-Step Formation of Multiple Emulsions in Microfluidics[J]. Lab Chip, 2011, 11(2):253-258. [42] COMUNIAN T A, ABBASPOURRAD A, FAVARO-TRINDADE C S, et al. Fabrication of Solid Lipid Microcapsules Containing Ascorbic Acid Using a Microfluidic Technique[J]. Food Chemistry, 2014, 152:271-275. doi: 10.1016/j.foodchem.2013.11.149 [43] COMUNIAN T A, RAVANFAR R, de CASTRO I A, et al. Improving Oxidative Stability of Echium Oil Emulsions Fabricated by Microfluidics:Effect of Ionic Gelation and Phenolic Compounds[J]. Food Chemistry, 2017, 233:125-134. doi: 10.1016/j.foodchem.2017.04.085 [44] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=23fabd9761fde73d7158d345e09c5018 LIU L, YANG J P, JU X J, et al. Monodisperse Core-Shell Chitosan Microcapsules for pH-Responsive Burst Release of Hydrophobic Drugs[J]. Soft Matter, 2011, 7(10):4821-4827. [45] doi: http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-s11224-010-9653-3/ REN P W, JU X J, XIE R, et al. Monodisperse Alginate Microcapsules with Oil Core Generated from a Microfluidic Device[J]. Journal of Colloid and Interface Science, 2011, 343(1):392-395. [46] LAMBA H, SATHISH K, SABIKHI L. Double Emulsions:Emerging Delivery System for Plant Bioactives[J]. Food Bioprocess Technol, 2015, 8(4):709-728. doi: 10.1007/s11947-014-1468-6 [47] doi: http://cn.bing.com/academic/profile?id=25c61ffe93b037023a69deed0c9795c2&encoded=0&v=paper_preview&mkt=zh-cn ESFANJANI A F, JAFARI S M, et al. Preparation of a Multiple Emulsion Based on Pectin-Whey Protein Complex for Encapsulation of Saffron Extract Nanodroplets[J]. Food Chemistry, 2017, 22:1962-1969. [48] ESTÉVEZ M, GVELL C, de LAMO-CASTELLVÍ S, et al. Encapsulation of Grape Seed Phenolic-Rich Extract within W/O/W Emulsions Stabilized with Complexed Biopolymers:Evaluation of their Stability and Release[J]. Food Chemistry, 2019, 272:478-487. doi: 10.1016/j.foodchem.2018.07.217 [49] COMUNIAN T A, RAVANFAR R, ALCAINE S D, et al. Water-in-Oil-in-Water Emulsion Obtained by Glass Microfluidic Device for Protection and Heat-Triggered Release of Natural Pigments[J]. Food Research International, 2018, 106:945-951. doi: 10.1016/j.foodres.2018.02.008