-
罗非鱼(Tilapia),俗称非洲鲫鱼,是备受人们关注的养殖类淡水鱼中的一种,其蛋白被冠以未来动物性蛋白来源之一的称号[1].近年来海水鱼的产量已不能满足人们日益增长的需求,与此同时,作为养殖类淡水鱼的一种,罗非鱼的产量呈现稳定增长的趋势[2].在生产鱼糜制品过程中,为了防止凝胶劣化、提高凝胶强度,向鱼糜制品中添加菊粉[3]、淀粉[4-7]、魔芋粉[8-11]、转谷氨酰胺酶制剂[12-14]、鱼皮明胶蛋白[15]等物质可以提高凝胶的凝胶性质.魔芋葡甘聚糖是一种没有能量的健康多糖,它不会被人体内消化酶酶解,所以人们称之为膳食纤维[16].魔芋粉具有改善和预防便秘、改善人体内葡萄糖利用情况的保健功能,被日人本称为“肠道清道夫”[17].魔芋粉经过不同剂量的辐照分子量发生一定的变化[18-20],对于不同分子量的魔芋葡甘聚糖与肌原纤维蛋白的复合凝胶性质研究还鲜有报道.本实验拟在肌原纤维蛋白中加入不同辐照剂量的魔芋葡甘聚糖,研究其在不同温度下对魔芋葡甘聚糖凝胶特性和持水性的影响,旨在为研究魔芋葡甘聚糖与肌原纤维蛋白凝胶机理奠定实验基础,同时也为将魔芋葡甘聚糖更好地应用到鱼糜制品中提供参考.
Textural Properties of Konjac Glucomnnan-Tilapia Myofibrillar Protein Composite Gels
-
摘要: 对不同重均分子量(923.8 kDa,307.8 kDa,169.0 kDa,53.0 kDa)和不同浓度的魔芋葡甘聚糖(KGM)(0.5%,1%,1.5%)在不同加热温度(85℃,90℃,95℃)下与罗非鱼肌原纤维蛋白(40 mg/mL)形成的复合凝胶的凝胶强度、凝胶白度、凝胶持水性进行了研究.结果显示:95℃加热条件,添加分子量为307.8 kDa,169.0 kDa,53.0 kDa的KGM可以显著提高复合凝胶的凝胶强度;85℃加热条件下形成的凝胶具有较高的白度;95℃加热时,923.8 kDa,307.8 kDa,169.0 kDa有益于复合凝胶持水力的保持.因此得出中等分子量魔芋葡甘聚糖更有利于复合凝胶的凝胶强度及持水力的保持.Abstract: Konjac glucomannan (KGM) of different molecular weight (923.8, 307.8, 169.0 and 53.0 kDa) and different concentration (0, 0.5%, 1% and 1.5%) was added to 40 mg/mL Tilapia myofibrillar protein at 85℃, 90℃ or 95℃ to prepare composite gels, and their gel strength, whiteness and water-holding capacity were investigated. The results showed that 307.8, 169.0 and 53.0 kDa KGM significantly improved the strength of the composite gels formed at 95℃. The heat-induced composite gels at 85℃ had a higher whiteness. The addition of 923.8, 307.8 and 169.0 kDa KGM was beneficial to the water-holding capacity of the composite gels prepared at 95℃. It can be concluded that KGM of medium molecular weight is more beneficial to increasing the strength and improving the water-holding capacity of the composite gels.
-
Key words:
- konjac glucomannan /
- Tilapia /
- myofibrillar protein /
- textural property /
- microstructure .
-
表 1 不同温度下KGM的添加量对凝胶强度的影响
/g Mw/kDa 0% 0.5% 1% 1.5% 加热条件 923.8 28.77±0.25b 15.64±0.35f 13.31±0.08h 14.23±0.00g 95 ℃ 20 min 307.8 30.09±0.15a 19.16±0.18e 14.20±0.23g 169.0 30.05±0.07a 24.15±0.41d 19.43±0.56e 53 29.39±0.52ab 28.57±0.40b 27.83±0.04c 923.8 19.53±0.32c 16.57±0.26f 15.55±0.27fg 15.20±0.37g 90 ℃ 20 min 307.8 18.05±0.39d 16.94±0.06ef 15.08±0.76g 169.0 18.23±0.24d 17.78±0.20de 17.50±0.13def 53 20.10±0.21c 21.17±0.30b 22.74±0.27a 923.8 24.88±0.16a 21.34±0.50de 18.87±0.40g 19.06±0.30fg 85 ℃ 20 min 307.8 24.77±0.25a 22.01±0.78de 20.24±0.25ef 169.0 24.79±0.14a 23.27±0.09bc 20.43±0.56e 53 24.43±0.45ab 23.06±0.16cd 23.31±0.34bc 注:显著性差异分析是针对各个温度内而非温度间,小写字母不同代表组间差异有统计学意义,p<0.05. 表 2 不同加热温度下KGM添加对凝胶白度的影响
Mw/kDa 0% 0.5% 1% 1.5% 加热条件 923.8 58.95±0.35a 60.54±0.56a 59.36±0.57a 59.60±0.10a 95 ℃ 20 min 307.8 60.43±0.49a 59.31±0.60a 60.46±0.16a 169.0 60.00±0.61a 59.47±0.50a 60.56±0.74a 53 60.74±0.70a 60.04±0.65a 59.60±0.66a 923.8 59.87±0.26ef 56.16±0.18h 56.30±0.41h 55.89±0.52h 90 ℃ 20 min 307.8 59.00±0.40f 59.93±0.20def 57.73±0.27g 169.0 60.97±0.14abc 60.87±0.34bcd 60.47±0.10bcde 53 60.09±0.13cde 61.11±0.16ab 61.89±0.40a 923.8 65.25±0.35a 60.96±0.09d 59.01±0.07efg 58.54±0.14g 85 ℃ 20 min 307.8 63.43±0.40bc 58.87±0.57fg 59.14±0.13efg 169.0 64.85±0.42ab 60.41±0.54def 59.48±0.62defg 53 62.45±0.05c 60.59±1.19de 62.80±0.31c 注:显著性差异分析是针对各个温度内,而非温度间,小写字母不同代表组间差异有统计学意义,p<0.05. 表 3 不同加热温度下KGM对凝胶持水力的影响
/% Mw/kDa 0% 0.5% 1% 1.5% 加热条件 923.8 74.21±0.31g 78.63±0.52f 79.46±0.48f 95.75±0.35a 95 ℃ 20 min 307.8 81.85±0.45de 80.82±0.31e 84.11±0.33bc 169.0 95.02±0.04a 84.36±0.49b 82.97±0.06cd 53 53.54±0.50i 53.40±0.53i 58.42±0.52h 923.8 59.42±0.52e 46.63±0.50g 93.60±0.50b 98.00±0.30a 90 ℃ 20 min 307.8 59.29±0.50e 71.68±0.66c 65.87±0.52d 169.0 55.06±0.50f 65.83±0.53d 60.35±0.48e 53 35.05±0.15h 46.92±0.95g 59.58±0.54e 923.8 74.81±0.31d 81.28±0.43c 95.90±0.10b 98.72±0.23a 85 ℃ 20 min 307.8 54.12±0.73i 72.87±0.62e 50.97±0.30j 169.0 60.26±0.35g 62.94±0.55f 60.55±0.66g 53 44.05±0.85k 56.10±0.88h 80.78±0.60c 注:显著性差异分析是针对各个温度内而非温度间,小写字母不同代表组间差异有统计学意义,p<0.05. -
[1] 汪之和.水产品加工与利用[M].北京:化学工艺出版社, 2002. [2] 刘海梅.鲢鱼糜凝胶及形成机理的研究[D].武汉: 华中农业大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10504-2007209990.htm [3] 李明清, 孔保华, 王宇, 等.菊粉对鲤鱼肌原纤维蛋白凝胶特性的影响[J].食品工业科技, 2010, 31(10):105-108. doi: http://d.old.wanfangdata.com.cn/Periodical/spgykj201010026 [4] 吴满刚, 熊幼翎, 陈洁.不同淀粉地肌纤维蛋白流变学性质和凝胶持水性的影响[J].食品工业科技, 2010, 31(10):92-94, 97. doi: http://d.old.wanfangdata.com.cn/Periodical/spgykj201010022 [5] WU M G, XIONG Y L, CHEN J. Effects of Strch on the Texture and Microstructure of Myofibrillar Protein Gels[J]. Science and Technology of Food Industey, 2010, 31(9):95-97. [6] 余永名, 马兴胜, 仪淑敏, 等.豆类淀粉对鲢鱼鱼糜凝胶特性的影响[J].现代食品科技, 2016, 32(1):129-135. doi: http://d.old.wanfangdata.com.cn/Conference/8812601 [7] 黄洁, 赵建新, 黄建联, 等.低水分马铃薯淀粉的理化性质及其对鱼糜制品凝胶特性的影响[J].现代食品科技, 2015, 31(3):108-114. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzspgykj201503019 [8] CHIN K B, GO M Y, XIONG Y L. Konjac Flour Improved Textural and Water Retention Properties of Transdglutaminase-mediated, Heated-induced Porcine Myofibrillar Protein Gel:Effect of Salt Level and Transglutaminase Incubation[J]. Meat Science, 2008, 81(3):565-572. [9] IGLESIAS-OTERO M A, BORDERIAS J, TOVAR C A. Use of Konjac Glucomannan as Addtive to Reinforce the Gels from Low-quality Squid Surimi[J]. Journal of Food Engineering, 2010, 101(3):281-288. doi: 10.1016/j.jfoodeng.2010.07.009 [10] 王良玉, 何明祥, 庞杰, 等.魔芋葡甘聚糖凝胶体系对带鱼鱼糜流变及质构特性的影响[J].西南大学学报(自然科学版), 2013, 35(6):88-94. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201306017&flag=1 [11] 王良玉, 陈小岚.复合凝胶在鱼糜制品中的应用研究[J].长江大学学报(自然科学版), 2013, 10(35):65-68. doi: http://d.old.wanfangdata.com.cn/Periodical/cjdxxb-b201312018 [12] 孙京新, 徐幸莲, 汤晓艳, 等.转谷氨酰胺酶制剂对带鱼鱼糜制品质构特性的影响[J].中国食品学报, 2004, 4(1):35-38. doi: 10.3969/j.issn.1009-7848.2004.01.007 [13] 娄忠纬.鳙鱼中转谷氨酰胺酶性质的研究及其对鱼糜凝胶化的影响[D].杭州: 浙江工商大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10353-1015553047.htm [14] 贾丹, 刘茹, 刘明菲, 等.转谷氨酰胺酶对鳙鱼糜热诱导胶凝特性的影响[J].食品科学, 2013, 34(9):37-41. doi: http://d.old.wanfangdata.com.cn/Periodical/spkx201309010 [15] 黄玉平, 翁武银, 张希春, 等.鱼皮明胶蛋白对淡水鱼糜凝胶特性的影响[J].中国食品学报, 2012, 12(11):51-58. doi: http://d.old.wanfangdata.com.cn/Conference/8368936 [16] KÖK M S, ABDELHAMEED A S, ANG S, et al. A Novel Global Hydrodynamic Analysis of the Molecular Flexibility of the Dietary Fibre Polysaccharide Konjac Glucomannan[J]. Food Hydrocolloids, 2009, 23(7):1910-1917. doi: 10.1016/j.foodhyd.2009.02.002 [17] HO H V T, JOVANOVSKI E, ZURBAU A, et al. A Systematic Review and Meta-analysis of Randomized Controlled Trials of the Effect of Konjac Glucomannan, a Viscous Soluble Fiber, on LDL Cholesterol and the New Lipid Targets Non-HDL Cholesterol and Apolipoprotein B[J]. The American Journal of Clinical Nutrition, 2017, 105(5):1239-1247. doi: 10.3945/ajcn.116.142158 [18] 耿盛荣, 李新, 廖涛, 等.魔芋葡甘聚糖辐照改性产物结构分析与应用研究[J].北京工商大学学报, 2011, 29(2):33-36. doi: http://d.old.wanfangdata.com.cn/Periodical/bjqgyxyxb201102007 [19] ZHANG T, LI Z J, WANG Y M, et al. Effects of Konjac Glucomannan on Heat-induced Changes of Physicochemical and Structural Properties of Surimi Gels[J]. Food Research International, 2016, 83:152-161. doi: 10.1016/j.foodres.2016.03.007 [20] 罗扬, 陆爱霞.魔芋葡苷聚糖的改性及其研究进展[J].食品研究与开发, 2012, 34(3):211-213. doi: 10.3969/j.issn.1005-6521.2012.03.062 [21] 罗永康, 周新华.鲢鱼蛋白质低温变形保护剂的而研究[J].食品科学, 1996, 17(1):59-62. doi: http://www.cnki.com.cn/Article/CJFDTotal-SPKX601.018.htm [22] KOBAYASHI Y, MAYER S G, PARK J W. FT-IR and Raman Spectroscopies Determine Structural Changes of Tilapia Fish Protein Isolate and Surimi under Different Comminution Conditions[J]. Food Chemistry, 2017, 226:156-164. doi: 10.1016/j.foodchem.2017.01.068 [23] 徐振林, 杨幼慧, 孙远明, 等.辐照魔芋葡甘聚糖的应用研究[J].中国食品学报, 2008, 8(1):78-82. doi: 10.3969/j.issn.1009-7848.2008.01.015 [24] YIN T, PARK J W. Effects of Nano-scaled Fish Bone on the Gelation Properties of Alaska Pollock Surimi[J]. Food chemistry, 2014, 150:463-468. doi: 10.1016/j.foodchem.2013.11.041 [25] 杨振, 孔保华, 夏秀芳, 等.魔芋粉对鲤鱼肌原纤维蛋白凝胶特性的影响[J].食品科学, 2012, 33(11):116-120. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Y2234992 [26] WU M G, XIONG Y L, CHEN J, et al. Rheologica and Microstructural Properties of Porcine Myofiibrillar Prot ein-Lipid Emulsion Composite Gels[J]. Journal of Food Science, 2009, 74(4):E207-217. doi: 10.1111/jfds.2009.74.issue-4 [27] 王雅立.魔芋葡甘聚糖分子稳定性研究[D].福州: 福建农林大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10389-2007135930.htm [28] 汪兰, 吴文锦, 乔宇, 等.冻藏条件下魔芋葡甘聚糖降解产物对肌原纤维蛋白结构的影响[J].食品科学, 2015, 36(22):244-249. doi: 10.7506/spkx1002-6630-201522046 [29] 何明祥.脱乙酰基葡甘聚糖对鳙鱼肌原纤维蛋白热诱导凝胶特性的影响[J].西南大学学报(自然科学版), 2018, 40(4):1-9. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201804001&flag=1 [30] 李美英, 冯观萍, 徐振林, 等.辐照处理对魔芋葡甘聚糖肠道益生作用的影响[J].食品科学, 2018, 39(11):83-88. doi: 10.7506/spkx1002-6630-201811013
计量
- 文章访问数: 836
- HTML全文浏览数: 560
- PDF下载数: 88
- 施引文献: 0