-
北美红枫(Acer rubrum L.)为槭树科(Aceraceae)槭树属(Acer L.)大型落叶乔木.原产北美洲东海岸,因其树形优美,叶色多彩,近年来被广泛引种于国内[1].北美红枫树高可达30 m,冠幅可达12 m,寿命可达100年.其适应能力强,生长速度快,易成形成林,非常适合作景观树种,为城市增添美感[2].北美红枫变种达40多种,在抗寒性、生长速率、秋季着色和叶片形态等方面表现出高度差异[3].目前,国内外学者对北美红枫的研究主要针对单一品种对环境条件的响应[4]、扦插育苗[5]、组培快繁[6]和栽培管理[7]等方面.李力等基于Lab模型对其呈色生理机制进行过探讨[8],指出花色素苷、光合色素和可溶性糖是影响叶片a值的重要因素,喷施蔗糖溶液不会显著影响叶片转色[9].研究发现,在秋季变色期,被引进到重庆地区的秋火焰(Acer rubrum ‘Autumn Blaze’)和酒红(Acer rubrum ‘Brandy Wine’)的叶片多数在转红前便已脱落,而十月光辉(Acer rubrum ‘October Glory’)的叶片转红早,效果好,持续时间长.为明确北美红枫的呈色机制,本试验以秋火焰等3种北美红枫为材料,测定和比较呈色期叶片的色素质量比、可溶性糖质量比、可溶性蛋白质量比、相关酶活性和叶片pH值等生理指标,研究北美红枫呈色的生理机制,以期为人工调控北美红枫秋季叶色提供理论依据.
Study of the Mechanism of Physiological Discoloration of North American Red Maple (Acer rubrum L.)
-
摘要: 为明确3种北美红枫秋季变色期呈色生理差异,进一步阐释北美红枫呈色生理机制,为北美红枫引种选择及适应性栽培提供参考,特对其叶色参数、色素质量比、可溶性糖质量比、可溶性蛋白质量比、相关酶活性、叶片pH值等进行测定,通过单因素方差分析比较三者间差异,并通过相关性分析探寻北美红枫转色关键作用因子.结果表明,色素质量比、可溶性糖质量比、可溶性蛋白质量比、多酚氧化酶(PPO)活性、叶片pH值等是影响北美红枫转红的重要作用因子.苯丙氨酸解氨酶(PAL)活性在北美红枫秋季变色期对色素质量比及色素比例并无明显影响,不是影响其叶色转变的重要影响因子.叶绿素和类胡萝卜素质量比下降是北美红枫转红的原因,但花色素苷质量比迅速增加、mChl/mAnt值和mCar/mAnt值的迅速降低才是北美红枫转红更为重要的直接原因.北美红枫叶色a值与可溶性糖质量比显著正相关(p < 0.01),整个秋季变色期,可溶性糖质量比呈不断上升趋势,但可溶性糖过量积累可能会抑制花色素苷合成,进而影响北美红枫叶片转红.北美红枫叶色a值与叶片pH值显著正相关(p < 0.01),整个秋季变色期,叶片pH值不断升高.Abstract: In order to clarify the physiological differences among three varieties of North American red maples (Acer rubrum L.) and further explain the physiological discoloration mechanism so as to provide a reference for the introduction and adaptive cultivation of red maples in southwestern China, a study was conducted in which the leaves of the three varieties were collected to measure their leaf color parameters, pigment contents, soluble sugar contents, soluble protein contents, the related enzyme activities and leaf pH values. Finally, one-way ANOVA was used to analyze their differences, and correlation analysis was used to explore the key factors of autumn color change of A. rubrum. The results showed that pigment, soluble sugar, soluble protein, PPO activity, and leaf pH were important factors influencing the leaf color of A. rubrum in autumn. PAL had no significant effect on pigment content, pigment ratio and leaf color parameters, so it was not an important factor affecting leaf color transformation of A. rubrum. While the decrease of chlorophyll content and carotenoid content was one reason, the rapid increase of anthocyanin content, the rapid decrease of Chl/Ant value and Car/Ant value had a much more direct influence on leaf discoloration. The "a" value of red maple leaf color was in a highly significant positive correlation with soluble sugar content (p < 0.01). The soluble sugar content increased continuously during the autumn discoloration period, however, excessive accumulation of soluble sugar might inhibit anthocyanin synthesis. The leaf pH value increased continuously throughout the autumn discoloration period. There was a highly significant positive correlation between "a" value and leaf pH value (p < 0.01).
-
Key words:
- Acer rubrum L. /
- anthocyanin /
- pigment ratio /
- soluble sugar /
- pH value .
-
表 1 不同采样时间3种北美红枫变色情况
采样期 采样时间 3种北美红枫采样期间变色情况 Ⅰ 9月30日 秋火焰、酒红、十月光辉均为绿色. Ⅱ 10月9日 秋火焰、酒红仍为绿色,十月光辉有近10%叶片颜色转黄. Ⅲ 10月18日 秋火焰、酒红近30%叶片颜色转黄,十月光辉近50%叶片颜色转红. Ⅳ 10月27日 秋火焰、酒红近20%叶片脱落,未脱落叶片近50%颜色转黄,仅10%颜色转红;十月光辉近10%叶片脱落,未脱落叶片近90%叶片转红. Ⅴ 11月5日 3种北美红枫叶片均处于脱落期.秋火焰、酒红未脱落叶片仅20%叶片颜色转红;十月光辉全株未脱落叶片均为红色. 表 2 3种北美红枫秋季变色期叶色参数
北美红枫品种 叶色参数 采样时间 9月30日 10月9日 10月18日 10月27日 11月5日 秋火焰 25.44±0.03a 21.51±0.37a 20.53±0.05a 18.93±0.69a 5.94±1.18a 酒红 L 37.72±11.04ab 27.10±1.39b 16.66±5.05a 14.10±1.95b 5.00±2.45a 十月光辉 43.75±2.99b 35.75±2.36c 27.75±3.77b 20.00±3.92a 12.00±2.71b 秋火焰 -24.25±2.06a -15.60±5.96a -2.03±5.45a 10.94±2.33a 19.50±1.29a 酒红 a -23.54±1.64a -15.75±1.71a -0.53±4.88a 6.54±1.72a 12.47±1.86b 十月光辉 -15.38±8.41a -4.56±4.61b 18.31±7.91b 23.78±6.31b 32.60±8.91c 秋火焰 28.50±3.70a 23.25±3.40a 17.00±0.82a 13.50±3.51a 5.44±0.17a 酒红 b 33.50±4.57a 21.49±0.37a 18.93±0.69a 13.63±3.53a 3.88±1.18b 十月光辉 31.09±0.91a 20.50±1.29a 22.50±2.08b 16.81±1.53b 14.56±1.14c 注:表中同列数据后无相同小写字母的表示差异具有统计学意义(p<0.05). 表 3 北美红枫秋季变色期各呈色因子的相关性分析
呈色因子 L a b mChl mCar mAnt mChl/mAnt mCar/mAnt Chl 0.964** -0.946** 0.950** 1 Car 0.807** -0.825** 0.785** 0.857** 1 Ant -0.935** 0.973** -0.947** -0.942** -0.838** 1 mChl/mAnt 0.951** -0.969** 0.964** 0.952** 0.759** -0.969** 1 mCar/mAnt 0.935** -0.976** 0.949** 0.934** 0.844** -0.989** 0.977** 1 SS -0.938** 0.930** -0.956** -0.905** -0.796** 0.948** -0.922** -0.938** SP -0.804** 0.849** -0.798** -0.827** -0.608** 0.890** -0.893** -0.871** PPO -0.803** 0.686** -0.796** -0.751** -0.523* 0.626** -0.708** -0.634** PAL 0.348 -0.404 0.302 0.299 0.058 -0.274 0.432 0.363 pH -0.794** 0.832** -0.724** -0.858** -0.936** 0.824** -0.748** -0.815** 注:Chl表示叶绿素质量比;Car表示类胡萝卜素质量比;Ant表示花色素苷质量比;SS表示可溶性糖质量比;SP表示可溶性蛋白质量比;PPO表示多酚氧化酶活性;PAL表示苯丙氨酸解氨酶活性. *代表显著相关(p<0.05);**代表极显著相关(p<0.01). -
[1] 邢祥胜.美国红枫观赏品种的引种及选育[D].泰安: 山东农业大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10434-1015306514.htm [2] 李力.北美红枫呈色生理机制及叶色调控[D].重庆: 西南大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10635-1016767160.htm [3] ABRAMS M D. The red maple paradox[J]. Bioscience, 1998, 48(5):355-364. doi: 10.2307/1313374 [4] LAHR E C, DUNN R R, FRANK S D. Variation in Photosynthesis and Stomatal Conductance among Red Maple (Acer rubrum) Urban Planted Cultivars and Wildtype Trees in the Southeastern United States[J]. PLoS One, 2018, 13(5):0197866-1-0197866-. [5] 徐建林. 5个北美红枫品种的引种适应性及嫩枝扦插技术研究[D].泰安: 山东农业大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10434-1015308963.htm [6] 吴雅琼, 刘婧, 汪贵斌, 等.美国红枫的组织培养与快繁技术[J].北方园艺, 2016(20):97-102. doi: http://d.old.wanfangdata.com.cn/Periodical/hbnykx201011006 [7] 徐华金.几种彩叶植物的引种栽培及适应性研究[D].北京: 北京林业大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10022-2007076822.htm [8] 李力, 张盛楠, 刘亚敏, 等.基于Lab模型的北美红枫呈色生理因素探究[J].西北农林科技大学学报(自然科学版), 2017, 45(9):87-94. doi: http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201709012 [9] 李梅洁, 刘玉民, 李力, 等.叶面喷施蔗糖对北美红枫叶色表现的影响[J].西部林业科学, 2017, 46(4):93-100. doi: http://d.old.wanfangdata.com.cn/Periodical/ynlykj201704019 [10] SCHWARZ M W, COWAN W B, BEATTY J C. An Experimental Comparison of RGB, YIQ, LAB, HSV, and Opponent Color Models[J]. Acm Transactions on Graphics, 1987, 6(2):123-158. doi: 10.1145/31336.31338 [11] LEE J, CHOUNG M G. Identification and Characterisation of Anthocyanins in the Antioxidant Activity-containing Fraction of Liriope Platyphylla Fruits[J]. Food Chemistry, 2011, 127(4):1686-1693. doi: 10.1016/j.foodchem.2011.02.037 [12] 邱念伟, 王修顺, 杨发斌, 等.叶绿素的快速提取与精密测定[J].植物学报, 2016, 51(5):667-678. doi: http://d.old.wanfangdata.com.cn/Periodical/zwxtb201605011 [13] 王文杰, 贺海升, 关宇, 等.丙酮和二甲基亚砜法测定植物叶绿素和类胡萝卜素的方法学比较[J].植物研究, 2009, 29(2):224-229. doi: http://www.cnki.com.cn/Article/CJFDTOTAL-MBZW200902019.htm [14] 刘金, 魏景立, 刘美艳, 等.早熟苹果花青苷积累与其相关酶活性及乙烯生成之间的关系[J].园艺学报, 2012, 39(7):1235-1242. doi: http://d.old.wanfangdata.com.cn/Periodical/yyxb201207002 [15] LISTER C E, LANCASTER J E, WALKER J R L. Developmental Changes in Enzymes of Flavonoid Biosynthesis in the Skins of Red and Green Apple Cultivars[J]. Journal of the Science of Food and Agriculture, 1996, 71(3):313-320. doi: 10.1002/(ISSN)1097-0010 [16] ANDERSON J V, MORRIS C F. An Improved Whole-Seed Assay for Screening Wheat Germplasm for Polyphenol Oxidase Activity[J]. Crop Science, 2001, 41(6):1697-1705. doi: 10.2135/cropsci2001.1697 [17] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000:135. [18] LEE H S, WICKER L. Anthocyanin Pigments in the Skin of Lychee Fruit[J]. Journal of Food Science, 1991, 56(2):466-468. doi: 10.1111/j.1365-2621.1991.tb05305.x [19] TOWNSEND A M, ROBERTS B R. Effect of Moisture Stress on Red Maple Seedlings from Different Seed Sources[J]. Canadian Journal of Botany-Revue Canadienne De Botanique, 1973, 51(10):1989-1995. [20] 李卫星, 杨舜博, 何智冲, 等.植物叶色变化机制研究进展[J].园艺学报, 2017, 44(9):1811-1824. doi: http://d.old.wanfangdata.com.cn/Periodical/hnnykx201112008 [21] CASADO S G, BELLOSO O M, MARTíNEZ P E, et al. Induced Accumulation of Individual Carotenoids and Quality Changes in Tomato Fruits Treated with Pulsed Electric Fields and Stored at Different Post-treatments Temperatures[J]. Postharvest Biology and Technology, 2018, 146:117-123. doi: 10.1016/j.postharvbio.2018.08.013 [22] 宋丽华, 石雯.银川市常见园林树木落叶物候观察及叶片变色机理[J].北方园艺, 2010(2):119-123. doi: http://d.old.wanfangdata.com.cn/Periodical/bfyany201002047 [23] GOLLOP R, FARHI S, PERL A. Regulation of the Leucoanthocyanidin Dioxygenase Gene Expression in Vitis vinifera[J]. Plant Science, 2001, 161(3):579-588. doi: 10.1016/S0168-9452(01)00445-9 [24] van TUNEN A J, KOES R E, SPELT C E, et al. Cloning of the 2 Chalcone Flavanone Isomerase Genes from Petunia-hybrida-coordinat, Light-regulated and Differential Expression of Flavonoid Genes[J]. Embo Journal, 1988, 7(5):1257-1263. doi: 10.1002/embj.1988.7.issue-5 [25] 代丽, 宫长荣, 史霖, 等.植物多酚氧化酶研究综述[J].中国农学通报, 2007, 23(6):312-316. doi: 10.3969/j.issn.1000-6850.2007.06.069 [26] 卓启苗, 丁彦芬, 余慧, 等.欧洲卫矛秋冬转色期叶色变化的生理机制[J].西北植物学报, 2018, 38(6):1072-1079. doi: http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201806012 [27] 唐前瑞, 陈德富, 陈友云, 等.红檵木叶色变化的生理生化研究[J].林业科学, 2006, 42(2):111-115. doi: http://d.old.wanfangdata.com.cn/Periodical/lykx200602019 [28] WELLMAN E, HRAZDINA G, GRISEBACH H. Induction of Anthocyanin Formation and of Enzymes Related to Its Biosynthesis by UV Light in Cell- cultures of Haplopappus-gracilis[J]. Phytochemistry, 1976, 15(6):913-915. doi: 10.1016/S0031-9422(00)84369-1 [29] 程怡, 张云婷, 王清明, 等.月季花发育过程中花色变化的生理生化研究[J].西北植物学报, 2014, 34(4):733-739. doi: http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201404014