-
磷对能量转运和生物生长有重要作用,而且也是广泛使用的营养元素之一.然而,含磷产品的过量消费不可避免地会造成大量污染物,引起水体富营养化[1].因此,研究简单、高效去除磷的方法有重要意义.吸附技术因其简单、高效及成本低已成为一种广泛使用的除磷方法[2].金属有机框架(metal organic framework,MOF)是一类多孔材料,是由有机配体与无机金属离子或金属离子簇自组装而成的配位聚合物[3],具有高孔隙率、低密度及大比表面积等特点,可直接吸附水中的各种有机污染物[4],但鲜见其用于废水除磷的研究报道.本研究使用2-氨基对苯二甲酸作为配体,合成双金属Fe-Zr MOF,探讨其吸附去除水中磷酸盐的特性,研究结果可为除磷吸附剂的筛选奠定基础.
Adsorption Removal of Phosphate from Water with an Fe-Zr Bimetallic Organic Framework
-
摘要: 用溶剂热法合成Fe-Zr双金属有机框架(metal organic framework,MOF)材料并研究了其吸附水中磷酸盐的性能,考察了溶液pH值和吸附剂用量对吸附的影响.结果表明,pH值为中性时Fe-Zr MOF吸附磷的效果最佳;Fe-Zr MOF对磷酸盐的吸附在24 h时达到平衡,吸附过程符合准二级动力学方程;吸附等温曲线可用Langmuir方程描述,最大吸附量为285.7 mg/g;Fe-Zr MOF材料重复利用10次后,对磷酸盐的吸附量为最初吸附量的80.6%,显示出良好的重复利用性能.Abstract: An Fe-Zr bimetallic organic framework(MOF) was synthesized with the solvothermal method, and the adsorption characteristics of phosphate onto Fe-Zr MOF in aqueous solution were studied. The effects of solution pH and dosage of Fe-Zr MOF adsorbent on the removal of phosphate were investigated. The results showed that the maximum phosphate adsorption with Fe-Zr MOF was obtained at the neutral pH condition. Also, the adsorption of phosphate onto Fe-Zr MOF reached equilibrium at 24 h, and the pseudo-second-order kinetic model was well suitable for modeling phosphate adsorption by Fe-Zr MOF. The adsorption isotherm of phosphate fitted well with the Langmuir equation, with a maximum adsorption capacity of 285.7 mg/g. After ten regeneration cycles, the removal efficiency of phosphate remained as high as 80.6%, showing a good reusability of the Fe-Zr MOF adsorbent.
-
Key words:
- metal organic framework /
- adsorption /
- phosphate /
- phosphorus removal adsorbent .
-
[1] 李艳, 赵孝梨, 黄玉明.磁性纳米Fe3O4对水中磷的吸附去除研究[J].西南大学学报(自然科学版), 2013, 35(5):127-130. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201305024&flag=1 [2] 张文娟, 谭力, 何勇, 等.改性方法对煤渣除磷效果的影响[J].西南大学学报(自然科学版), 2011, 33(5):84-87. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=xnnydxxb201105016&flag=1 [3] GASCON J, CORMA A, KAPTEIJN F, et al. Metal Organic Framework Catalysis:Quo vadis?[J]. ACS Catalysis, 2014, 4(2):361-378. doi: 10.1021/cs400959k [4] DIAS E M, PETIT C. Towards the Use of Metal-Organic Frameworks for Water Reuse:A Review of the Recent Advances in the Field of Organic Pollutants Removal and Degradation and the Next Steps in the Field[J]. Journal of Materials Chemistry A, 2015, 3(45), 22484-22506. doi: 10.1039/C5TA05440K [5] 孙丽华, 田海龙, 段茜, 等. 3种含铁吸附剂对水中磷酸盐的吸附性能[J].水处理技术, 2016, 42(1):45-48. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scljs201601009 [6] LALLEY J, HAN C, LI X, et al. Phosphate Adsorption Using Modified Iron Oxide-Based Sorbents in Lake Water:Kinetics, Equilibrium, and Column Tests[J]. Chemical Engineering Journal, 2016, 284:1386-1396. doi: 10.1016/j.cej.2015.08.114 [7] LIN K Y A, CHEN S Y, JOCHEMS A P. Zirconium-based Metal Organic Frameworks:Highly Selective Adsorbents for Removal of Phosphate from Water and Urine[J]. Materials Chemistry and Physics, 2015, 160:168-176. doi: 10.1016/j.matchemphys.2015.04.021 [8] YOON S Y, LEE C G, PARK J A, et al. Kinetic, Equilibrium and Thermodynamic Studies for Phosphate Adsorption to Magnetic Iron Oxide Nanoparticles[J]. Chemical Engineering Journal, 2014, 236:341-347. doi: 10.1016/j.cej.2013.09.053 [9] YANG Q, WANG J, ZHANG W, et al. Interface Engineering of Metal Organic Framework on Graphene Oxide with Enhanced Adsorption Capacity for Organophosphorus Pesticide[J]. Chemical Engineering Journal, 2017, 313:19-26. doi: 10.1016/j.cej.2016.12.041