-
目前市场上的增香剂种类繁多,香豆素就是其中的一类,被广泛用于食品、化妆品等行业[1-2].而动物实验表明香豆素具有致癌性,是一种高毒性的内酯类化合物[3].毒理研究发现香豆素在人体的含量达到一定量时,会给肝脏带来一定的伤害[4],进而欧洲一些国家对香豆素的添加量做了规定[5-6].牛血清白蛋白(BSA)是一种单链结构蛋白质,既能与亲水性分子结合,也能和疏水性物质结合[7-8],加之在结构与性能上,BSA与人血清白蛋白有一定的相似性,把它放到模拟人体环境中研究生物效应机理具有一定的指导意义[9].
目前科研工作人员对香豆素的研究也做了大量的工作,杨树平等人[10]用荧光光谱法研究了不同温度下配合物与BSA的相互作用;陈爱菊[11]运用紫外-可见分光光度法(UV-vis)以及荧光光谱法等探讨了香豆素类抗癌药物与环糊精及BSA在水溶液中的相互作用;Shobini J团队[12]研究了合成香豆素与人血清白蛋白的相互作用;刘雪锋等人[13]利用运用荧光光谱(FS)、紫外光谱(UV)法研究了3种香豆素中药小分子与BSA的相互作用.这些方法虽然灵敏度高,重现性好,但存在背景干扰大、分析时间长、操作复杂等问题.本研究主要以银纳米粒子为基底,表面增强拉曼光谱(SERS)技术具有制样简单、分析时间短等优点,首次运用SERS技术考察香豆素与BSA的相互作用,以进一步从分子层面深入了解香豆素的药效机理.
Surface-Enhanced Raman Spectroscopy with Nanosilver as the Substrate to Study the Interaction Between Coumarin and Bovine Serum Albumin (BSA)
-
摘要: 实验报道了香豆素的拉曼光谱以及在银纳米粒子基底上的表面增强拉曼光谱,并对其特征峰进行了归属,与固体香豆素的常规拉曼进行对比,发现香豆素的特征峰位置基本没变.实验优化了牛血清白蛋白(BSA)与银纳米粒子的体积混合比例,研究了香豆素与BSA相互作用的表面增强拉曼光谱.实验表明,BSA与银纳米粒子体积比为1:3混合时,BSA的拉曼增强信号最佳.在低浓度下,银纳米粒子对香豆素及BSA都有明显的增强效果,其增强效果主要体现在银纳米粒子与香豆素苯环中的π电子、羰基中的氧原子以及BSA中含有孤电子的N原子、蛋白质中二硫键中的S原子发生吸附作用.加入BSA后,香豆素中525,675 cm,和1 327 cm-1处的拉曼信号发生红移,但并未消失,说明香豆素的骨架振动因与牛血清白蛋白发生作用而受到影响;拉曼位移1 184,1 230,1 563 cm-1处的拉曼峰信号明显减弱,这是由于加入BSA后,香豆素的C—O不对称伸缩振动以及C=O的伸缩振动造成的;847,897,1 488 cm-1拉曼峰消失,这是由于香豆素中芳环平面与BSA作用而导致的.与香豆素的表面增强拉曼光谱信号相比,香豆素与BSA复合物的表面增强拉曼光谱信号明显减弱,可能是BSA的α-螺旋结构被香豆素分子中的平面结构所插入,产生非共价键的π-π堆积的作用,使香豆素中芳环π电子密度发生变化,引起能量改变.以银纳米粒子为基底,利用表面增强拉曼光谱考察香豆素与BSA的相互作用,具有分析时间短、操作简单快速、原位无损检测等优点,为香豆素及其他增香剂与蛋白质相互作用的深入研究及其药理研究提供了参考.Abstract: The Raman spectrum of coumarin and the surface-enhanced Raman spectrum (SERS) on the silver nanoparticle substrate were reported and the characteristic peaks were assigned. A comparison of SERS with the normal Raman spectrum (NRS) of solid coumarin indicated that the position of the characteristic peak of coumarin was basically unchanged. The experiment optimized the volume mixing ratio of bovine serum albumin (BSA) and silver nanoparticles and studied the SERS of the interaction of coumarin with BSA. The results demonstrated that when the volume ratio of BSA to silver nanoparticles was 1:3, the bovine serum albumin showed the strongest Raman enhancement signal. At low concentrations, silver nanoparticles had obvious enhancement effects on both bovine serum albumin and coumarin. The enhancement effect was mainly reflected in the adsorption of π electrons in silver benzene and coumarin benzene ring, oxygen atom in carbonyl group, N atom containing lone electron in BSA, and S atom in disulfide bond in protein. After the addition of BSA, the Raman signal at 525 cm-1, 675 cm-1, and 1 327 cm-1 in coumarin was red-shifted but did not disappear, indicating that the skeletal vibration of coumarin was affected by the interaction with BSA. The Raman signals at Raman shifts of 1 184 cm-1, 1 230 cm-1, 1 327 cm-1 and 1 563 cm-1 were significantly weakened, due to the C-O asymmetric stretching vibration and C=O stretching vibration of coumarin after BSA addition. The 847 cm-1, 897 cm-1, and 1 488 cm-1 Raman peaks disappeared due to the action of the aromatic ring plane and bovine serum albumin in the coumarin. Compared with the SERS signal of coumarin, the SERS signals of coumarin and bovine serum albumin complex were obviously weakened. The cause might be that the α-helical structure of BSA was inserted by the planar structure in the coumarin molecule, resulting in π of non-covalent bond. The π stacking action changed the π electron density of the aromatic ring in the coumarin, bringing about an energy change. In summery, in this study silver nanoparticles were used as the substrate to investigate the interaction between coumarin and BSA with the SERS technique. The method has the advantages of short analysis time, simple and rapid operation, and in situ nondestructive detection, and provides a reference for the in-depth study of the interaction of other flavoring agents with proteins and its pharmacological research.
-
Key words:
- coumarin /
- nanosilver /
- bovine serum albumin (BSA) /
- surface-enhanced Raman spectroscopy (SERS) .
-
表 1 香豆素的拉曼位移及归属
NRS/cm-1 SERS/cm-1 Assignment 373(m) 348(w) 374(w) τ(C—C—C) 420(w) 444(s) 449(m) 487(w) 494(w) Frame deformation vibration 523(w) 563(w) 581(w) 590(w) 728(m) 686(s) 761(m) 730(m) γ(C—H) 763(m) 888(w) 817(w) 865(w) brνas(—O—) 995(w) 936(w) br ν(—O—) 1 028m(s) 1 029(s) 1 100(w) 1 071(w) νs(C—O—C) 1 119(m) 1 119(m) 1 152(m) 1 152(w) νas(C—O) 1 174(s) 1 178(w) 1 226(m) 1 224(m) 1 256(w) 1 277(w) ν(C—O—C) 1 276(w) 1 321(m) 1 334(m) δ(C—H) 1 399(w) 1 382(w) 1 452(w) 1 448(m) 1 484(w) 1 562(s) 1 558(s) 1 601(s) 1 603(s) ν(C=C) 1 614(s) 1 702(s) ν(C=O) 1 725(w) 注:τ,扭曲振动;γ,面外弯曲振动;δ,面内弯曲振动;b,环呼吸;ν,伸缩振动;νs,对称伸缩振动;νas,不对称伸缩振动;s,强峰;m,中等强度峰;w,弱峰. -
[1] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ryhxgy201712014 BETTERO A, BENASSI C A. Determination of Coumarin and 6-methylcoumarin in Cosmetics by High-performance Liquid Chromatography[J]. Journal of Pharmaceutical and Biomedical Analysis, 1983, 1(2):229-233. [2] WOEHRLIN F, FRY H, ABRAHAM K, et al. Quantification of Flavoring Constituents in Cinnamon:High Variation of Coumarin in Cassia Bark from the German Retail Market and in Authentic Samples from Indonesia[J]. Journal of Agricultural and Food Chemistry, 2010, 58(19):10568-10575. doi: 10.1021/jf102112p [3] 黄梅英, 李攻科, 胡玉玲.表面增强拉曼光谱法定量检测食品中香豆素[J].分析化学, 2015, 43(8):1218-1223. doi: http://d.old.wanfangdata.com.cn/Periodical/fxhx201508018 [4] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000543029 ZAHEER Z, KONALE A G, PATEL K A, et al. Comparative Phytochemical Screening of Flowers of Plumeria Alba and Plumeria Rubra[J]. Asian Journal of Pharmaceutical and Clinical Research, 2010, 3(4):88-89. [5] 吴新华, 朱瑞芝, 陆舍铭, 等.超高效液相色谱-串联质谱法快速测定香精中香豆素的含量[J].理化检验:化学分册, 2009, 45(12):1407-1409. doi: http://d.old.wanfangdata.com.cn/Conference/7237136 [6] 韩熠, 张承明, 喻坤, 等.食品及化妆品中香豆素和黄樟素类化合物分析方法研究进展[J].香料香精化妆品, 2013(1):45-49. doi: 10.3969/j.issn.1000-4475.2013.01.012 [7] PETERS T, AZZAZYJ H M E, CHRISTENSON R H. All about Albumin:Biochemistry, Genetics, and Medical Applications[M]. us:Academic Press, 1995. [8] Carter D C, Ho J X. Structure of Serum Albumin[C]//Advances in Protein Chemistry. US: Academic Press, 1994, 45: 153-203. [9] 王珊, 高丰琴, 杨小玲.以唑草·苯磺隆为模型研究酮类小分子与牛血清白蛋白的相互作用[J].化工科技, 2016, 24(1):20-23. doi: 10.3969/j.issn.1008-0511.2016.01.005 [10] 杨树平, 韩立军, 王大奇, 等.香豆素-3-羧酸铒(Ⅲ)一维配位聚合物[Er(CCA)3(H2O)2]n·2nH2O的溶剂热法合成, 晶体结构及与牛血清白蛋白(BSA)的相互作用[J].化学学报, 2011, 69(19):2319-2327. [11] 陈爱菊.香豆素类抗癌药物与环糊精及生物大分子的相互作用[D].聊城: 聊城大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10447-1014050022.htm [12] SHOBINI J, MISHRA A K, SANDHYA K, et al. Interaction of Coumarin Derivatives with Human Serum Albumin:Investigation by Fluorescence Spectroscopic Technique and Modeling Studies[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2001, 57(5):1133-1147. doi: 10.1016/S1386-1425(00)00492-3 [13] 刘雪锋, 夏咏梅, 方云, 等.三种香豆素类中药小分子与牛血清白蛋白的相互作用[J].化学学报, 2004, 62(16):1484-1490. doi: 10.3321/j.issn:0567-7351.2004.16.006 [14] MA J J, ZHAN M S. Rapid Production of Silver Nanowires Based on High Concentration of AgNO3 Precursor and Use of FeCl3 as Reaction Promoter[J]. RSC Advances, 2014, 4(40):21060-21071. doi: 10.1039/c4ra00711e [15] 方艳, 马琳琳, 陕多亮, 等.石墨烯-金纳米粒子复合膜修饰电极的制备及对双酚A的测定[J]高等学校化学学报[J]. 2015, 36(8):1491-1497. doi: http://d.old.wanfangdata.com.cn/Periodical/gdxxhxxb201508007 [16] 王小玉, 康和, 邓朝阳, 等.核壳纳米粒子与牛血清白蛋白表面增强拉曼光谱的研究[J].分析科学学报, 2009, 25(4):443-446. doi: http://d.old.wanfangdata.com.cn/Periodical/fxkxxb200904017 [17] 任毅华, 周光明, 吴捷, 等.诺氟沙星与DNA的拉曼光谱研究[J].光谱学与光谱分析, 2009, 29(11):2980-2983. doi: 10.3964/j.issn.1000-0593(2009)11-2980-04 [18] 张彩红, 周光明, 程洪梅, 等.包裹BSA的线状银为基底探讨小檗碱的拉曼光谱[J].西南大学学报(自然科学版), 2016, 38(11):113-118. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201611017&flag=1