-
随着微生物组研究的深入,越来越多的研究表明多细胞动物不单单只是一个简单的生物体,而是携带了众多微生物体的“超级生物体”. 2019年5月,Nature杂志宣布了人类微生物组计划第二阶段的完成,该阶段主要包括了微生物与早产、微生物与炎症性肠病、微生物组与糖尿病三部分研究内容[1].与人类微生物组研究一样,昆虫肠道微生物的研究同样也取得了非常瞩目的成果[2-7].研究证明同种昆虫的肠道微生物种类和丰度会因食物、地域和生长发育等不同而出现差异[8-10],相同地域相同食物的不同昆虫之间肠道微生物也会存在较大差异[11].肠道微生物功能的研究证明,肠道微生物与昆虫的生长发育、生殖系统及消化系统发育、运动能力、迁徙聚集等有着密切的关系.果蝇肠道中的植物乳酸杆菌被证实可通过调节胰岛素信号通路促进宿主黑腹果蝇的生长速率[12-13],产气荚膜梭菌、东方醋酸杆菌等细菌同样对果蝇的生长发育有促进作用[14-15].有研究证明肠道微生物通过改变肠道微环境的氧化还原反应通路促进昆虫中肠组织的发育[16-17];而醋酸杆菌属细菌可促进果蝇卵巢组织中乙醛脱氢酶的合成,乙醛脱氢酶进一步促进果蝇的卵巢发育并提高产卵量[18].群聚、迁徙行为对于某些昆虫种群的生存是至关重要的,如蝗虫、蜜蜂、蟑螂,研究表明昆虫的群聚、迁徙行为会受到肠道微生物影响.在农业害虫蝗虫的肠道中,肠道微生物可合成分泌大量的愈创木酚和少量的苯酚,两种物质均可促进蝗虫的群聚[19];在被微孢子虫感染后,蝗虫肠道微环境稳态失衡会严重影响蝗虫的群聚[20].通过蟑螂肠道微生物的研究发现,蟑螂肠道微生物群产生的挥发性羧酸同样对蟑螂的群聚行为至关重要[21].
草地贪夜蛾(Spodoptera frugiperda)是世界重大迁飞性农林害虫,主要以禾本科植物(玉米、高粱、水稻)为食,危害巨大.自2019年1月从东南亚进入我国云南、广西地区,随着温度升高和农作物的丰富,草地贪夜蛾随季风快速迁徙至全国19个省份[22-25].虽然美国和巴西开展了草地贪夜蛾肠道优势细菌分离鉴定工作[26-27],但在我国暂未见相关的研究报道.本研究采集了重庆巫山、巫溪地区玉米田中的草地贪夜蛾样本,通过传统培养法以及16S rDNA测序对草地贪夜蛾的肠道优势菌进行了初步分离鉴定,以期为后续的深入研究奠定基础.
Isolation and Identification of Gut Bacteria of Spodoptera frugiperda That Migrated to Chongqing Area
-
摘要: 为了解入侵重庆地区草地贪夜蛾(Spodoptera frugiperda)肠道所携带的细菌组成,以采集自巫溪、巫山地区玉米地里的草地贪夜蛾为材料,运用传统培养方法分离了其肠道优势细菌,并基于16S rDNA测序开展了优势菌的属水平鉴定,共获得了30个细菌分离株,经16S rDNA序列同源性分析,可归于5个属,分别为克雷伯氏菌属(Klebsiella)、不动杆菌属(Acinetobacter)、假单胞菌属(Pseudomonas)、肠杆菌属(Enterobacter)以及气单胞菌属(Aeromonas);其中,克雷伯氏菌属(Klebsiella)的丰度最高,占所有分离菌株的63%;假单胞属(Pseudomonas)和肠杆菌属(Enterobacter)菌株仅在巫山地区分离得到,气单胞菌属(Aeromonas)仅在巫溪地区分离得到.实验确定了入侵重庆地区草地贪夜蛾肠道优势细菌的种类及丰度,为后续研究草地贪夜蛾肠道微生物对宿主的生长发育以及迁飞等重要问题奠定了基础.Abstract: In order to understand the composition of bacteria in the guts of fall armyworm (FAW, Spodoptera frugiperda) that migrated to Chongqing, the dominant bacteria from the pest samples collected from maize fields in Wushan and Wuxi of Chongqing were isolated with the traditional culture method and identified with 16S rDNA sequencing. A total of 30 isolates of gut bacteria were obtained, and were clustered in 16S rDNA homology analyses into 5 taxa, i.e. Klebsiella, Acinetobacter, Pseudomonas, Enterobacter and Aeromonas. Of the 5 genera identified, Klebsiella had the highest abundance, accounting for 63% of the total. Pseudomonas and Enterobacter were isolated only in pest samples of Wushan, while Aeromonas was only found in those of Wuxi. In conclusion, this study has identified the generic composition of the intestinal bacteria of S. frugiperda that has migrated to Chongqing and determined their abundance, which may serve as a basis for future work on the impact of the intestinal microbes on the growth and development and migration of S. frugiperda.
-
Key words:
- Chongqing area /
- fall armyworm (FAW, Spodoptera frugiperda) /
- gut bacteria /
- identification .
-
表 1 巫山、巫溪草地贪夜蛾肠道细菌分离株种属统计
OUT ID 样品地区 NCBI ID RDP ID 巫山 巫溪 OUT1 WS1
WS2
WS6
WS11
WS14
WS17WX1,WX2
WX3,WX4
WX5,WX6
WX7,WX8
WX9,WX10
WX11,WX12
WX19Klebsiella Klebsiella OUT2 WS15
WS3
WS4
WS18NA Pseudomonas Pseudomonas OUT3 WS7
WS5
WS9NA 未定属 Acinetobacter OUT4 WS12 WX21 Acinetobacter Acinetobacter OUT5 WS8 NA Enterobacter Enterobacter OTU6 NA WX17 Aeromonas Aeromonas 注:NA表示未分离得到. -
[1] PROCTOR L M, CREASY H H, FETTWEIS J M, et al.The Integrative Human Microbiome Project[J].Nature, 2019, 569(7758):641-648. doi: 10.1038/s41586-019-1238-8 [2] SCHRETTER, C E, VIELMETTER J, BARTOS I, et al.A Gut Microbial Factor Modulates Locomotor Behaviour in Drosophila[J].Nature, 2018, 563(7731):402-406. doi: 10.1038/s41586-018-0634-9 [3] DOBSON, A J, CHASTON J M, DOUGLAS A E.The Drosophila Transcriptional Network is Structured by Microbiota[J].BMC Genomics, 2016, 17(1):975-1-975-9. doi: 10.1186/s12864-016-3307-9 [4] KWONG W K, MORAN N A.Cultivation and Characterization of the Gut Symbionts of Honey Bees and Bumble Bees:Description of Snodgrassellaalvi gen.nov.sp.nov.a Member of the Family Neisseriaceae of the Betaproteobacteria, and Gilliamellaapicola gen.nov.sp.nov.a Member of Orbaceae fam.nov.Orbales ord.nov.a Sister Taxon to the Order'Enterobacteriales'of the Gammaproteobacteria[J].International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 6):2008-2018. doi: 10.1099/ijs.0.044875-0 [5] ZHENG H, POWELL J E, STEELE M I, et al.Honeybee Gut Microbiota Promotes Host Weight Gain via Bacterial Metabolism and Hormonal Signaling[J].Proceedings of the National Academy of Sciences, 2017, 114(18):4775-4780. doi: 10.1073/pnas.1701819114 [6] MIKAELYAN A, THOMPSON C L, HOFER M J, et al.Deterministic Assembly of Complex Bacterial Communities in Guts of Germ-Free Cockroaches[J].Applied and Environmental Microbiology, 2016, 82(4):1256-1263. doi: 10.1128/AEM.03700-15 [7] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dd7c3f4976b27f759418848b7d93b1d7 TEGTMEIER D, THOMPSON C L, SCHAUER C, et al.Oxygen Affects Colonization and Metabolic Activities of Gut Bacteria in a Gnotobiotic Cockroach Model[J].Applied and Environmental Microbiology, 2015, 82(4):1080-1089. [8] CORBY-HARRIS V, PONTAROLI A C, SHIMKETS L J, et al.Geographical Distribution and Diversity of Bacteria Associated with Natural Populations of Drosophila melanogaster[J].Applied and Environmental Microbiology, 2007, 73(11):3470-3479. doi: 10.1128/AEM.02120-06 [9] ZHANG Z Q, JIAO S, LI X H, et al.Bacterial and Fungal Gut Communities of Agrilusmaliat Different Developmental Stages and Fed Different Diets[J].Scientific Reports, 2018, 8(1):15634. doi: 10.1038/s41598-018-34127-x [10] 向芸庆, 王晓强, 冯伟, 等.不同饲料饲养家蚕其肠道微生态优势菌群类型的组成及差异性[J].生态学报, 2009, 30(14):3875-3882. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201014025 [11] CHEN B S, DU K Q, SUN C, et al.Gut Bacterial and Fungal Communities of the Domesticated Silkworm (Bombyx mori) and Wild Mulberry-Feeding Relatives[J].The ISME Journal, 2018, 12(9):2252-2262. doi: 10.1038/s41396-018-0174-1 [12] STORELLI G, DEFAYE A, ERKOSAR B, et al.Lactobacillus plantarum Promotes Drosophila Systemic Growth by Modulating Hormonal Signals Through TOR-Dependent Nutrient Sensing[J].Cell Metabolism, 2011, 14(3):403-414. doi: 10.1016/j.cmet.2011.07.012 [13] 李玉娟, 苏琬真, 胡坤坤, 等.植物乳杆菌促进黑腹果蝇生长发育[J].昆虫学报, 2017, 60(5):544-552. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcxb201705006 [14] 刘威, 李玉娟, 刘晓梁, 等.产气荚膜梭菌促进黑腹果蝇的生长和发育[J].昆虫学报, 2016, 59(5):530-537. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcxb201605007 [15] 李玉娟.东方醋酸杆菌通过胰岛素信号促进果蝇生长发育的研究[D].太原: 山西医科大学, 2017. [16] REEDY A R, LUO L P, NEISH A S, et al.Commensal Microbiota-Induced Redox Signaling Activates Proliferative Signals in the Intestinal Stem Cell Microenvironment[J].Development, 2019, 146(3):1-7. [17] doi: http://cn.bing.com/academic/profile?id=35831ec2c1afbfc65751883e439f7223&encoded=0&v=paper_preview&mkt=zh-cn JAHNES B C, HERRMANN M, SABREE Z L.Conspecific Coprophagy Stimulates Normal Development in a Germ-Free Model Invertebrate[J].PeerJ, 2019, 7:e6914-1-e6914-18. [18] ELGART M, STERN S, SALTON O, et al.Impact of Gut Microbiota on the Fly's Germ Line[J].Nature Communications, 2016, 7:11280-1-11280-11. doi: 10.1038/ncomms11280 [19] DILLON R J, VENNARD C T, CHARNLEY A K.A Note:Gut Bacteria Produce Components of a Locust Cohesion Pheromone[J].Journal of Applied Microbiology, 2002, 92(4):759-763. doi: 10.1046/j.1365-2672.2002.01581.x [20] SHI W P, GUO Y, XU C, et al.Unveiling the Mechanism by Which Microsporidian Parasites Prevent Locust Swarm Behavior[J].Proceedings of the National Academy of Sciences, 2014, 111(4):1343-1348. doi: 10.1073/pnas.1314009111 [21] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f24b5b11d7642488ccef8cf4c7fa31c4 WADA-KATSUMATA A, ZUREK L, NALYANYA G, et al.Gut Bacteria Mediate Aggregation in the German Cockroach[J].Proceedings of the National Academy of Sciences, 2015, 112(51):15678-15683. [22] 陈冬平, 陈志廷, 徐汉虹, 等.不同分子标记对入侵广州草地贪夜蛾的寄主型鉴别能力比较[J/OL].华南农业大学学报: 1-5(2019-06-17)[2019-07-01].http://kns.cnki.net/kcms/detail/44.1110.S.20190617.1027.002.html. [23] 秦誉嘉, 蓝帅, 赵紫华, 等.迁飞性害虫草地贪夜蛾在我国的潜在地理分布[J/OL].(2019-06-10)[2019-07-01].植物保护: 1-8.https://doi.org/10.16688/j.zwbh.2019269. [24] 张磊, 靳明辉, 张丹丹, 等.入侵云南草地贪夜蛾的分子鉴定[J].植物保护, 2019, 45(2):19-24, 56. doi: http://d.old.wanfangdata.com.cn/Periodical/zwbh201902005 [25] 齐国君, 马健, 胡高, 等.首次入侵广东的草地贪夜蛾迁入路径及天气背景分析[J/OL].环境昆虫学报: 1-13(2019-06-03)[2019-07-01].http://kns.cnki.net/kcms/detail/44.1640.Q.20190601.1228.004.html. [26] doi: http://cn.bing.com/academic/profile?id=c8f3432bbac09a764d16149cfa4e43db&encoded=0&v=paper_preview&mkt=zh-cn de ALMEIDA L G, de MORAES L A B, TRIGO J R, et al.The Gut Microbiota of Insecticide-Resistant Insects Houses Insecticide-Degrading Bacteria:A Potential Source for Biotechnological Exploitation[J].Plos One, 2017, 12(3):e0174754-1e0174754-19. [27] ACEVEDO F E, PEIFFER M, TAN C W, et al.Fall Armyworm-Associated Gut Bacteria Modulate Plant Defense Responses[J].Molecular Plant-Microbe Interactions, 2017, 30(2):127-137. doi: 10.1094/MPMI-11-16-0240-R [28] TAMURA K, PETERSON D, PETERSON N, et al.MEGA5:Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods[J].Molecular Biology and Evolution, 2011, 28(10):2731-2739. doi: 10.1093/molbev/msr121 [29] CHUNG S H, ROSA C, SCULLY E D, et al.Herbivore Exploits Orally Secreted Bacteria to Suppress Plant Defenses[J].Proceedings of the National Academy of Sciences, 2013, 110(39):15728-15733. doi: 10.1073/pnas.1308867110