-
马尾松(Pinus massoniana Lamb.)是我国南方地区造林先锋树种,具有适应性强、用途广、速生丰产等优点,贵州省马尾松资源分布不均衡、林地生产率低,且低效林面积日益增加[1-2].杜鹃(Rhododendron simsii Planch.)常伴生于马尾松林下,对维持马尾松林稳定性、提高林地生产力具有重要意义[3].植物与共生真菌之间的相互影响可以促进和维持两者地上和地下的多样性[4],充分了解土壤真菌的多样性和群落结构,对有效促进农林牧业的生产,维持生态系统物种的多样性、保持生态平衡等有重要意义[5].菌根围作为土壤-根系-微生物三者紧密结合且相互影响的区域[6],承载着植物、土壤和微生物之间的绝大部分物质、能量与信息的交换[7].真菌作为植物根围土壤中微生物的重要组成部分,既能调节微生物数量和种群结构,抑制病原菌生长[8-10],还能影响植物根系对矿质营养的吸收和分配,增强植物的抗逆性[11-14].
目前已有大量有关不同生境下的马尾松林外生菌根(Ectomycorrhiza,ECM)[15]和杜鹃属植物菌根(Ericoid Mycorrhiza,ERM)多样性的研究报道[16-19],Heinonsalo等[20]对同一生境下的杜鹃属菌根及伴生植物菌根进行比较研究,得出杜鹃属菌根真菌在其他植物根部也能形成,共生植物菌根之间存在关联性.黔中地区马尾松纯林较广,杜鹃作为伴生植物增加了森林物种的多样性,但有关马尾松-杜鹃群落土壤真菌多样性的研究还罕见报道.笔者以杜鹃根围土壤作为研究对象,探讨马尾松-杜鹃群落杜鹃根围土壤真菌的多样性,在黔中地区选取3个相似植被类型的马尾松-杜鹃混交林样地,以扩增子(internal transcribed spacer,ITS)区作为测序研究区,通过数量生态学原理分析植物多样性及土壤养分对真菌群落的影响,为后续马尾松纯林改造、马尾松-杜鹃复合林地维护及森林组成、结构和多样性的调整奠定基础.
Diversity of Soil Fungi in the Rhizosphere of Rhododendron simsii within Pinus massoniana-R. simsii Communities in Central Guizhou
-
摘要: 选取黔中地区的贵阳市乌当区百宜乡(WD)、花溪区孟关(MG)和贵州省黔南龙里县龙架山森林公园(LL)3个地区的马尾松-杜鹃群落为研究对象,采集杜鹃根围土壤进行高通量测序,分析物种多样性,并通过数量生态学原理分析植物群落物种α多样性及土壤养分对真菌群落的影响.结果表明:从杜鹃的根围土壤中获得有效序列505 444条,隶属于9门23纲84目169科296属真菌(3 435 OTU),其中LL有真菌9门19纲53目90科127属(495 OTU)、WD有8门21纲78目150科246属(1 076 OTU)、MG有6门17纲55目99科129属(522 OTU).菌群α多样性分析显示,Chao1,ACE,Shannon指数均表现为WD大于MG和LL.菌群群落结构受生境植物多样性、土壤养分的综合作用,土壤有机质、pH值以及速效磷、速效氮、全氮含量较大程度解释了真菌对土壤养分变化的响应.Abstract: Taking the Pinus massoniana-Rhododendron simsii communities in three areas of WuDang (WD), MengGuan (MG) and LongLi (LL) in Central Guizhou as the research objects, the rhizosphere soil of R. simsii was collected for high-throughput sequencing to analyze species diversity. The effects of vegetation α diversity and soil nutrient on fungal communities were analyzed with the principle tative ecology. A total of 505 444 effective sequences were obtained from the rhizosphere soil of R. simsii, belonging to 9 phyla, 23 classes, 84 orders, 169 families and 296 genera (3 435 OTU). Among them, LL fungi 9 phyla, 19 classes, 53 orders, 90 families, and 127 genera (495 OTU); WD fungi 8 phyla, 21 classes, 78 orders, 150 families and 246 genera (1 076 OTU); and MG fungi 6 phyla, 17 classes, 55 orders, 99 families and 129 genera (522 OTU). Alpha diversity analysis showed that the Chao1, ACE and Shannon indices were all in the order of WD > MG and LL. The community structure of the flora was affected by the diversity of habitat plants and soil nutrients, and fungi diversity was consistent with plant diversity. Soil organic matter (C), pH, available phosphorus (AP), available nitrogen (AN), and total nitrogen (TN) largely explain the response mechanism of the distribution of fungi species to the changes of soil nutrient.
-
表 1 菌群生境环境因子
样地 土壤理化性质 植物群落物种α多样性 pH值 有机质/
(g·kg-1)全氮/
%速效氮/
%速效磷/
%速效钾/
%D J LL 3.82±0.19b 37.32±0.19b 25.91±4.31c 1.82±0.13b 2.57±0.22a 32.48±3.77b 2.46±0.04b 0.43±0.01ab MG 3.72±0.08b 61.97±6.87a 55.42±6.52a 3.43±1.07a 2.77±0.54a 42.19±2.83a 2.27±0.3b 0.37±0.05b WD 4.46±0.22a 52.73±4.35a 41.35±9.34b 2.59±0.45ab 1.25±0.19b 34.75±5.71ab 2.93±0.12a 0.46±0.02a 注:D和J分别代表Shannon-Wiener多样性指数和Pielou均匀度指数.同列小写字母不同表示差异有统计学意义(p<0.05). 表 2 马尾松-杜鹃群落杜鹃根围土壤真菌多样性指数
样地 Simpson指数 Chao1指数 ACE指数 Shannon指数 MG 0.88a 255.33b 255.33b 4.19b WD 0.96a 635.00a 650.00a 6.15a LL 0.83a 255.67b 255.89b 3.77b 注:同列小写字母不同表示差异有统计学意义(p<0.05). -
[1] 周政贤.中国马尾松[M].北京:中国林业出版社, 2001. [2] 刘建忠, 余娜.贵州省马尾松林地质量空间评价与低效林防控措施研究[J].湖北农业科学, 2016, 55(20):5202-5206. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnykx201620010 [3] 中国科学院中国植物志编委会.中国植物志·第57(2)卷[M].北京:科学出版社, 1994. [4] KERNAGHAN G.Mycorrhizal Diversity:Cause and Effect?[J].Pedobiologia, 2005, 49(6):511-520. doi: 10.1016/j.pedobi.2005.05.007 [5] 徐丽娟, 刁志凯, 李岩, 等.菌根真菌的生理生态功能[J].应用生态学报, 2012, 23(1):285-292. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201201040 [6] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=88e1bc8627bfbad5f6e56b70151e96a7 JOHANSSON J F, PAUL L R, FINLAY R D.Microbial Interactions in the Mycorrhizosphere and Their Significance for Sustainable Agriculture[J].FEMS Microbiology Ecology, 2004, 48(1):1-13. [7] BAETZ U, MARTINOIA E.Root Exudates:The Hidden Part of Plant Defense[J].Trends in Plant Science, 2014, 19(2):90-98. doi: 10.1016/j.tplants.2013.11.006 [8] 董艳, 董坤, 杨智仙, 等.AM真菌控制蚕豆枯萎病发生的根际微生物效应[J].应用生态学报, 2016, 27(12):4029-4038. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201612035 [9] SMITH DE, READ DJ.Mycorrhizal Symbiosis[M].London:Academic Press, 1997. [10] PRIYADHARSINI P, ROJAMALA K, RAVI R K, et al.Mycorrhizosphere:The Extended Rhizosphere and Its Significance[M]//Plant-Microbe Interaction:An Approach to Sustainable Agriculture.Singapore:Springer Singapore, 2016:97-124. [11] 陈荣建, 熊丹, 欧静, 等.持续干旱下杜鹃花类菌根真菌对桃叶杜鹃内源激素的影响[J].西南大学学报(自然科学版), 2018, 40(3):26-33. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201803004&flag=1 [12] 欧静, 何跃军, 刘仁阳, 等.杜鹃花类菌根真菌对桃叶杜鹃幼苗光合性能及叶绿素荧光参数的影响[J].微生物学通报, 2013, 40(8):1423-1436. doi: http://d.old.wanfangdata.com.cn/Periodical/wswxtb201308011 [13] 欧静, 刘仁阳, 陈训.桃叶杜鹃菌根显微结构及侵染情况[J].中南林业科技大学学报, 2012, 32(11):28-33. doi: http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201211005 [14] BOOTH M G.Mycorrhizal Networks Mediate Overstorey-Understorey Competition in a Temperate Forest[J].Ecology Letters, 2004, 7(7):538-546. doi: 10.1111/ele.2004.7.issue-7 [15] 李敏.贵州主要马尾松群落中ECM真菌多样性研究[D].贵阳: 贵州大学, 2016. [16] 刘仁阳, 欧静, 李冠楠, 等.梵净山雷山杜鹃根部真菌分离与鉴定[J].西北农业学报, 2014, 23(4):178-185. doi: http://d.old.wanfangdata.com.cn/Periodical/xbnyxb201404029 [17] 刘振华.杜鹃花菌根真菌分离鉴定及多样性分析[D].北京: 中国林业科学研究院, 2010. [18] 张春英, 戴思兰.杜鹃花类菌根研究进展[J].北京林业大学学报, 2008, 30(3):113-119. doi: 10.3321/j.issn:1000-1522.2008.03.020 [19] LIN L C, LEE M J, CHEN J L.Decomposition of Organic Matter by the Ericoid Mycorrhizal Endophytes of Formosan Rhododendron (Rhododendron formosanum Hemsl.)[J].Mycorrhiza, 2011, 21(5):331-339. doi: 10.1007/s00572-010-0342-2 [20] HEINONSALO J, KOSKIAHDE I, SEN R.Scots Pine Bait Seedling Performance and Root Colonizing Ectomycorrhizal Fungal Community Dynamics before and during the 4 Years after Forest Clear-Cut Logging[J].Canadian Journal of Forest Research, 2007, 37(2):415-429. doi: 10.1139/x06-213 [21] 崔宁洁, 陈小红, 刘洋, 等.不同林龄马尾松人工林林下灌木和草本多样性[J].生态学报, 2014, 34(15):4313-4323. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201415023 [22] 王圳, 张金池, 崔晓晓, 等.VA菌根对喀斯特草本群落植物根际养分影响研究[J].生态环境学报, 2010, 19(7):1574-1577. doi: 10.3969/j.issn.1674-5906.2010.07.011 [23] GILBERT J A.PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences[J].PLoS One, 2012, 7(9):e46180.DOI:10.1371/journal.pone.0046180. [24] EDGAR R C.Search and Clustering Orders of Magnitude Faster than BLAST[J].Bioinformatics, 2010, 26(19):2460-2461. doi: 10.1093/bioinformatics/btq461 [25] KLJALG U, NILSSON R H, ABARENKOV K, et al.Towards a Unified Paradigm for Sequence-Based Identification of Fungi[J].Molecular Ecology, 2013, 22(21):5271-5277. doi: 10.1111/mec.12481 [26] CAUSEY B D.Parametric Estimation of the Number of Classes in a Population[J].Journal of Applied Statistics, 2002, 29(6):925-934. doi: 10.1080/02664760220136221 [27] CHAO A N, YANG M C K.Stopping Rules and Estimation for Recapture Debugging with Unequal Failure Rates[J].Biometrika, 1993, 80(1):193-201. doi: 10.1093/biomet/80.1.193 [28] SHANNON C E.A Mathematical Theory of Communication[J].Bell System Technical Journal, 1948, 27(4):623-656. doi: 10.1002/bltj.1948.27.issue-4 [29] SIMPSON E H.Measurement of Diversity[J].Nature, 1949, 163(4148):688. doi: 10.1038/163688a0 [30] 魏源, 王世杰, 刘秀明, 等.喀斯特地区丛枝菌根真菌遗传多样性[J].生态学杂志, 2011, 30(10):2220-2226. doi: http://d.old.wanfangdata.com.cn/Conference/7880512 [31] MANGAN S A, HERRE E A, BEVER J D.Specificity between Neotropical Tree Seedlings and Their Fungal Mutualists Leads to Plant-Soil Feedback[J].Ecology, 2010, 91(9):2594-2603. doi: 10.1890/09-0396.1 [32] SPENCE L A, DICKIE I A, COOMES D A.Arbuscular Mycorrhizal Inoculum Potential:A Mechanism Promoting Positive Diversity-Invasibility Relationships in Mountain Beech Forests in New Zealand?[J].Mycorrhiza, 2011, 21(4):309-314. doi: 10.1007/s00572-010-0340-4 [33] ROSLING A, COX F, CRUZ-MARTINEZ K, et al.Archaeorhizomycetes:Unearthing an Ancient Class of Ubiquitous Soil Fungi[J].Science, 2011, 333(6044):876-879. doi: 10.1126/science.1206958 [34] GUO M Y, LIU Y, GAO Y H, et al.Identification and Bioactive Potential of Endogenetic Fungi Isolated from Medicinal Caterpillar Fungus Ophiocordyceps Sinensis from Tibetan Plateau[J].International Journal of Agriculture and Biology, 2017, 19(2):307-313. doi: 10.17957/IJAB [35] 许秀兰, 杨春琳, 田莎, 等.华山松凋落针叶上的真菌多样性及4株真菌的纤维素分解能力[J].林业科学, 2016, 52(1):80-88. doi: 10.3969/j.issn.1001-1498.2016.01.012 [36] ZHANG Y H, NI J, TANG F P, et al.The Effects of Different Human Disturbance Regimes on Root Fungal Diversity of Rhododendron Ovatum in Subtropical Forests of China[J].Canadian Journal of Forest Research, 2017, 47(5):659-666. doi: 10.1139/cjfr-2016-0388 [37] 宿晓琳, 李英滨, 杨波, 等.植物多样性组成对亚热带森林土壤微生物群落的影响[J].生态学杂志, 2018, 37(8):2254-2261. doi: http://www.cqvip.com/QK/90811X/20188/675879661.html [38] EISENHAUER N.Plant Diversity Effects on Soil Microorganisms:Spatial and Temporal Heterogeneity of Plant Inputs Increase Soil Biodiversity[J].Pedobiologia, 2016, 59(4):175-177. doi: 10.1016/j.pedobi.2016.04.004 [39] VAN DER HEIJDEN M G A, KLIRONOMOS J N, URSIC M, et al.Mycorrhizal Fungal Diversity Determines Plant Biodiversity, Ecosystem Variability and Productivity[J].Nature, 1998, 396(6706):69-72. doi: 10.1038/23932 [40] MELLADO-VÁZQUEZ P G, LANGE M, BACHMANN D, et al.Plant Diversity Generates Enhanced Soil Microbial Access to Recently Photosynthesized Carbon in the Rhizosphere[J].Soil Biology and Biochemistry, 2016, 94:122-132. doi: 10.1016/j.soilbio.2015.11.012 [41] 张金屯.数量生态学[M].北京:科学出版社, 2011. [42] 何苑皞, 周国英, 王圣洁, 等.杉木人工林土壤真菌遗传多样性[J].生态学报, 2014, 34(10):2725-2736. doi: http://d.old.wanfangdata.com.cn/Periodical/stxb201410029 [43] DICKIE I A, MARTNEZ-GARCA L B, KOELE N, et al.Mycorrhizas and Mycorrhizal Fungal Communities Throughout Ecosystem Development[J].Plant and Soil, 2013, 367(1-2):11-39. doi: 10.1007/s11104-013-1609-0 [44] SHI L L, MORTIMER P E, FERRY SLIK J W, et al.Variation in Forest Soil Fungal Diversity along a Latitudinal Gradient[J].Fungal Diversity, 2014, 64(1):305-315. doi: 10.1007/s13225-013-0270-5 [45] 郭伟, 耿珍珍, 陈朝, 等.模拟氮沉降增加对长白山红松和水曲柳菌根真菌群落结构及多样性的影响[J].生态环境学报, 2018, 27(1):10-17. doi: http://d.old.wanfangdata.com.cn/Periodical/tryhj201801002 [46] 周田田, 丁榕, 蔡建超, 等.杜鹃根际微生物的分离、鉴定及多样性分析[J].上海农业学报, 2017, 33(2):63-70. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shnyxb201702012