Exact Solutions of Time Fractional Klein-Gordon-Type Equations and Their Dynamical Properties
-
摘要: 利用变量分离法与齐次平衡原理相结合的方法,对非线性时间分数阶Klein-Gordon型方程进行了研究,获得了这个非线性时间分数阶偏微分方程的各类精确解,进一步讨论了这些解的动力学性质,并且通过图像模拟的方式直观地展示了部分精确解的动力学演化行为和动力学现象.
-
关键词:
- 齐次平衡法 /
- 变量分离法 /
- 精确解 /
- Mittag-Leffler函数
Abstract: In this work, based on the method of separation of variables combined with the homogeneous balance principle, we study the time-fractional Klein-Gordon-type equation. Different kinds of the exact solutions of this nonlinear time-fractional partial differential equation are obtained. Further, the dynamic properties of these solutions are discussed and, by means of the simulation way, the dynamic evolution behaviors and dynamic phenomena of some exact solutions are shown intuitively. -
[1] DAFTARDAR-GEJJI V, JAFARI H. Adomian Decomposition:A Tool for Solving a System of Fractional Differential Equations[J]. Journal of Mathematical Analysis and Applications, 2005, 301(2):508-518. doi: 10.1016/j.jmaa.2004.07.039 [2] ESLAMI M, FATHI VAJARGAH B, MIRZAZADEH M, et al. Application of First Integral Method to Fractional Partial Differential Equations[J]. Indian Journal of Physics, 2014, 88(2):177-184. doi: 10.1007/s12648-013-0401-6 [3] doi: http://link.springer.com/article/10.1007/s40819-015-0049-3 BAKKYARAJ T, SAHADEVAN R. Approximate Analytical Solution of Two Coupled Time Fractional Nonlinear Schrödinger Equations[J]. International Journal of Applied and Computational Mathematics, 2016, 2(1):113-135. [4] SAHADEVAN R, BAKKYARAJ T. Invariant Analysis of Time Fractional Generalized Burgers and Korteweg-De Vries Equations[J]. Journal of Mathematical Analysis and Applications, 2012, 393(2):341-347. doi: 10.1016/j.jmaa.2012.04.006 [5] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fca-2015-0010 SAHADEVAN R, BAKKYARAJ T. Invariant Subspace Method and Exact Solutions of Certain Nonlinear Time Fractional Partial Differential Equations[J]. Fractional Calculus and Applied Analysis, 2015, 18(1):146-162. [6] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1306.1942 HARRIS P A, GARRA R. Analytic Solution of Nonlinear Fractional Burgers-Type Equation by Invariant Subspace Method[J]. Nonlinear Studies, 2013, 20(4):471-481. [7] WU G C, LEE E W M. Fractional Variational Iteration Method and Its Application[J]. Physics Letters A, 2010, 374(25):2506-2509. doi: 10.1016/j.physleta.2010.04.034 [8] doi: http://cn.bing.com/academic/profile?id=f1a01f52571c93ead988cf1af97a239c&encoded=0&v=paper_preview&mkt=zh-cn ZAYED E M E, AMER Y A, SHOHIB R M A. The Fractional Complex Transformation for Nonlinear Fractional Partial Differential Equations in the Mathematical Physics[J]. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2016, 19(1):59-69. [9] CHEN J, LIU F, ANH V. Analytical Solution for the Time-Fractional Telegraph Equation by the Method of Separating Variables[J]. Journal of Mathematical Analysis and Applications, 2008, 338(2):1364-1377. doi: 10.1016/j.jmaa.2007.06.023 [10] LI X Z. Comment on "Applications of Homogenous Balanced Principle on Investigating Exact Solutions to a Series of Time Fractional Nonlinear PDEs", [Commun Nonlinear Sci Numer Simulat 47(2017) 253-266] [J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 59:606-607. doi: 10.1016/j.cnsns.2017.12.006 [11] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c8c5c87db525a6c37c54ff32b555ecf5 RUI W G. Applications of Integral Bifurcation Method Together with Homogeneous Balanced Principle on Investigating Exact Solutions of Time Fractional Nonlinear PDEs[J]. Nonlinear Dynamics, 2018, 91(1):697-712. [12] WAZWAZ A M. Solutions of Compact and Noncompact Structures for Nonlinear Klein-Gordon-Type Equation[J]. Applied Mathematics and Computation, 2003, 134(2-3):487-500. doi: 10.1016/S0096-3003(01)00296-X [13] LORCA S, MONTENEGRO M. Positive Solutions to a Non-Radial Supercritical Klein-Gordon-Type Equation[J]. Proceedings of the Edinburgh Mathematical Society, 2006, 49(2):383. doi: 10.1017/S0013091504001312 [14] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4c4ce3187c2ac407b6f480f3a17b660c GUO S M, MEI L Q. The Fractional Variational Iteration Method Using He's Polynomials[J]. Physics Letters A, 2011, 375(3):309-313. [15] 阳志锋, 罗李平. Lifes pan of Solutions to a Klein-Gordon Equation[J].贵州师范大学学报(自然科学版), 2006, 24(3):91-94. doi: 10.3969/j.issn.1004-5570.2006.03.021