-
众所周知,偏微分方程的求解是比较困难的,一般计算的方法都是经过差分将其离散化,进而得到相应的偏差分方程,然后通过计算偏差分方程的解来研究偏微分方程的解,因此偏差分方程的解的研究就显得十分重要[1-4].另外,在土木工程、机械控制等实际问题中存在着各种振动现象[5-8],而描述这些现象的数学模型大多是偏微分方程,因此为了研究工程实际问题的振动行为,有必要对偏差分方程的解的振动特性进行研究.然而在研究偏差分方程的振动特性时,受到Laplace反变换计算难度的影响,偏差分方程的振动性研究成果相对较少[9-12].文献[13]借助包络理论研究了偏差分方程
的振动性,并且给出了方程振动的充要条件.文献[14-16]进一步研究了三类二阶三系数偏差分方程的振动性,同时给出了相应方程解的不同振动条件,本文在文献[14-16]的基础上,考虑一类三阶三系数偏差分方程
的振动性.
Oscillatory Behavior of a Third-Order Partial Difference Equation with Three Coefficients
-
摘要: 应用包络理论,研究了三阶三系数偏差分方程 pum+3,n+qum,n+3+um+1,n+um,n+1+rum,n=0 p,q,r∈$\mathbb{R}$,m,n∈$\mathbb{N}$ 的振动性,给出了振动的充要条件.Abstract: In this paper, we study the oscillatory behavior of the third-order partial difference equation with three coefficients pum+3, n+qum, n+3+um+1, n+um, n+1+rum, n=0 p, q, r∈$\mathbb{R}$, m, n∈$\mathbb{N}$ Meanwhile, using the envelope theory, we obtain the necessary and sufficient conditions for oscillation of solutions.
-
Key words:
- partial difference equation /
- oscillation /
- envelope /
- characteristic equation .
-
[1] LUO J W.Oscillation of Hyperbolic Partial Differential Equations with Impulses[J].Applied Mathematics and Computation, 2002, 133(2-3):309-318. doi: 10.1016/S0096-3003(01)00217-X [2] BERGER M J, OLIGER J.Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations[J].Journal of Computational Physics, 1984, 53(3):484-512. doi: 10.1016/0021-9991(84)90073-1 [3] SMITH B F.Domain Decomposition Methods for Partial Differential Equations[M]//Parallel Numerical Algorithms.Berlin:Springer, 1997. [4] 王培光, 葛渭高.一类非线性偏泛函微分方程的强迫振动性[J].系统科学与数学, 2000, 20(4):454-461. doi: 10.3969/j.issn.1000-0577.2000.04.010 [5] 曾诚, 孙永胜, 杨智勇.连续减速带激励下非线性车辆半车模型振动分析[J].西南大学学报(自然科学版), 2017, 39(2):142-146. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201702022&flag=1 [6] ISLAM M N, CHEN Z.Natural Oscillation Control of Prototype Mechanical Rectifiers[J].IEEE Transactions on Control Systems Technology, 2012, 20(6):1559-1566. doi: 10.1109/TCST.2011.2165718 [7] 陈彦, 于徐红.高速公路斜拉桥索力检测数据快速采集与识别方法[J].贵州师范大学学报(自然科学版), 2013, 31(4):92-95. doi: 10.3969/j.issn.1004-5570.2013.04.024 [8] YASUDA M, TAKEI K, ARIE T, et al.Oscillation Control of Carbon Nanotube Mechanical Resonator by Electrostatic Interaction Induced Retardation[J].Scientific Reports, 2016, 6(1):22600. doi: 10.1038/srep22600 [9] ZHANG B G, AGARWAL R P.The Oscillation and Stability of Delay Partial Difference Equations[J].Comput Math Appl, 2003, 45(6-9):1253-1295. doi: 10.1016/S0898-1221(03)00099-3 [10] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=89c44676e9f743d95f4ab5285f552ac0 ZHANG B G, LIU B M.Necessary and Sufficient Conditions for Oscillations of Partial Difference Equations with Continuous Variables[J].Computers & Mathematics With Applications, 1999, 38(5-6):163-167. [11] LIU S T, ZHANG B G, CHEN G.Asymptotic Behavior and Oscillation of Delay Partial Difference Equations with Positive and Negative Coefficients[J].The Rocky Mountain Journal of Mathematics, 2003, 33(3):953-970. doi: 10.1216/rmjm/1181069937 [12] ZHANG B G, ZHOU Y.Qualitative Analysis of Delay Partial Difference Equations[M].New York:Hindawi Publishing Corporation, 2007. [13] doi: http://cn.bing.com/academic/profile?id=e75accbb7b4c153e34016760c0c79ab1&encoded=0&v=paper_preview&mkt=zh-cn YUAN C H, LIU S T, LIU J.Exact Oscillation Regions for a Partial Difference Equation[J].Advances in Difference Equations, 2015, 2015(1):1-6. [14] 王娇凤, 马慧莉.一类偏差分方程的振动性[J].数学的实践与认识, 2017, 47(12):308-312. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxdsjyrs201712037 [15] 王娇凤.几类偏差分方程振动性研究[D].兰州: 西北师范大学, 2017. [16] 王文杰, 薛蓉, 马慧莉.二阶三参数混合型偏差分方程解的振动性[J].数学的实践与认识, 2018, 48(5):228-234. doi: http://d.old.wanfangdata.com.cn/Periodical/sxdsjyrs201805029 [17] CHENG S S, LIN Y Z.Dual Sets of Envelopes and Characteristic Regions of Quasi-Polynomials[M].Singapore:World Scientific, 2009. [18] 陈朝晖.二元函数凹凸性的判别法及最值探讨[J].高师理科学刊, 2010, 30(5):25-28. doi: 10.3969/j.issn.1007-9831.2010.05.009