-
铬及其化合物是重要的化工原料,广泛用于制革、电镀和颜料生产等.由于其具有致癌、致突变性质,这些工业排放的含铬Cr(Ⅵ)废液对环境和人类健康产生了严重威胁.为此,建立了多种技术方法用于去除Cr(Ⅵ),如化学还原、离子交换和吸附法[1-3]等.吸附法具有简单、易操作、成本低等优点,受到广泛关注.目前,基于微生物细胞[4]、壳聚糖[5]和农业副产物[6]的生物吸附剂已用于Cr(Ⅵ)去除,具有成本低、无毒和来源丰富等优点.壳聚糖(CTS)是一种很有潜力的生物吸附剂,因为CTS易生物降解,而且其分子链中含有丰富的功能基团(—NH2和—OH)等[7].然而,未修饰的CTS难以从废水中分离出来,因此,多种磁性CTS吸附剂应运而生,已用于去除Cr(Ⅵ)[7-8].然而在多数情况下,这些MCTS合成过程复杂,至少包括三步:首先合成磁性Fe3O4纳米颗粒,其次对其表面进行修饰,最后再将CTS嫁接在其表面.而且,已经报道的MCTS对Cr(Ⅵ)的吸附容量有限,如Hu等[9]用乙二胺修饰的交联CTS对Cr(Ⅵ)的最大吸附容量仅为51.81 mg/g,为改善其吸附容量,王文凤等通过一步热溶剂法简单快速地合成了200 nm左右的MCTS微球,该微球对Cu(Ⅱ)吸附容量可达129.6 mg/g,而且吸附在10 min内达到平衡[10].聚乙烯亚胺(PEI)是具有支链结构的阳离子聚电解质,其分子链上富含大量氨基,在较宽的pH值范围内都可以质子化带正电荷,可与带负电荷的阴离子通过静电作用实现去除.本研究先通过一步热溶剂法合成纳米颗粒MCTS,再通过交联法将PEI修饰在其表面,从而进一步提高吸附剂对Cr(Ⅵ)的吸附能力.
Cr(Ⅵ) Removal from Water with Polyethyleneimine-Modified Magnetic Chitosan
-
摘要: 利用一锅热溶剂法合成磁性壳聚糖纳米颗粒(MCTS),再用聚乙烯亚胺(PEI)修饰,成功合成了一种新型磁性生物吸附材料PEI-MCTS,并将其用于吸附去除Cr(Ⅵ),系统研究了溶液初始pH值、PEI负载量、吸附剂用量、离子强度及吸附时间等对Cr(Ⅵ)吸附去除的影响.结果表明,酸性条件有利于Cr(Ⅵ)的吸附,PEI-MCTS吸附Cr(Ⅵ)符合Langmuir模型和准二级动力学模型,最大吸附量为193.57 mg/g.PEI-MCTS纳米复合材料稳定、重复使用性好,可用于Cr(Ⅵ)的吸附去除.Abstract: Magnetic chitosan (MCTS) nanoparticles were synthesized with a one-pot solvothermal method and then modified by polyethylenimide (PEI) to prepare magnetic PEI-MCTS for removing Cr(Ⅵ). The effects of the initial solution pH, PEI content, adsorbent dosage, ionic strength and adsorption time were systematically studied. The results showed that an acid condition favored Cr (Ⅵ) adsorption. Cr(Ⅵ) adsorption by PEI-MCTS could be described with the Langmuir model and the pseudo-second-order model, and the maximum adsorption capacity was 193. 57 mg/g. In conclusion, the PEI-MCTS composites developed in this study are stable and reusable and, therefore, are recommended for Cr(Ⅵ) removal.
-
Key words:
- polyethyleneimine /
- magnetic chitosan (MCTS) /
- adsorption /
- Cr(Ⅵ) .
-
[1] LIU B, HUANG Y M. Polyethyleneimine Modified Eggshell Membrane as a Novel Biosorbent for Adsorption and Detoxification of Cr(Ⅵ) from Water[J]. Journal of Materials Chemistry, 2011, 21(43):17413-17418. doi: 10.1039/c1jm12329g [2] CAVACO S A, FERNANDES S, QUINA M M, et al. Removal of Chromium from Electroplating Industry Effluents by Ion Exchange Resins[J]. Journal of Hazardous Materials, 2007, 144(3):634-638. doi: 10.1016/j.jhazmat.2007.01.087 [3] HAN C, JIAO Y N, WU Q Q, et al. Kinetics and Mechanism of Hexavalent Chromium Removal by Basic Oxygen Furnace Slag[J]. Journal of Environmental Sciences, 2016, 46:63-71. doi: 10.1016/j.jes.2015.09.024 [4] BANKAR A V, KUMAR A R, ZINJARDE S S. Removal of Chromium (Ⅵ) Ions from Aqueous Solution by Adsorption onto Two Marine Isolates of Yarrowia Lipolytica[J]. Journal of Hazardous Materials, 2009, 170(1):487-494. doi: 10.1016/j.jhazmat.2009.04.070 [5] CHEN D M, LI W, WU Y R, et al. Preparation and Characterization of Chitosan/Montmorillonite Magnetic Microspheres and Its Application for the Removal of Cr (Ⅵ)[J]. Chemical Engineering Journal, 2013, 221:8-15. doi: 10.1016/j.cej.2013.01.089 [6] SUN X F, JING Z X, WANG H H, et al. Removal of Low Concentration Cr(Ⅵ) from Aqueous Solution by Modified Wheat Straw. Journal of Applied Polymer Science[J]. 2013, 129(3): 1555-1562. [7] LIU X W, HU Q Y, FANG Z, et al. Magnetic Chitosan Nanocomposites:a Useful Recyclable Tool for Heavy Metal Ion Removal[J]. Langmuir, 2009, 25(1):3-8. doi: 10.1021/la802754t [8] REDDY D H K, LEE S M. Application of Magnetic Chitosan Composites for the Removal Of Toxic Metal and Dyes from Aqueous Solutions[J]. Advances in Colloid and Interface Science, 2013, 201-202:68-93. doi: 10.1016/j.cis.2013.10.002 [9] HU X J, WANG J S, LIU Y G, et al. Adsorption of Chromium(Ⅵ) by Ethylenediamine-Modified Cross-Linked Magnetic Chitosan Resin:Isotherms, Kinetics and Thermodynamics[J]. Journal of Hazardous Materials, 2011, 185(1):306-314. doi: 10.1016/j.jhazmat.2010.09.034 [10] 王文凤.磁性壳聚糖小球的简易制备及其除铜性能的研究[D].南京: 南京大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10284-1016181329.htm [11] ZHANG L F, XIA W, LIU X, et al. Synthesis of Titanium Cross-Linked Chitosan Composite for Efficient Adsorption and Detoxification of Hexavalent Chromium from Water[J]. Journal of Materials Chemistry A. 2015, 3(1):331-340. doi: 10.1039/C4TA05194G [12] SHI Z L, NEOH K G, KANG E T, et al. Surface Functionalization of Titanium with Carboxymethyl Chitosan and Immobilized Bone Morphogenetic Protein-2 for Enhanced Osseointegration[J]. Biomacromolecules, 2009, 10(6):1603-1611. doi: 10.1021/bm900203w [13] TIAN Y, YU B B, LI X, et al. Facile Solvothermal Synthesis of Monodisperse Fe3O4 Nanocrystals with Precise Size Control of One Nanometre as Potential MRI Contrast Agents[J]. Journal of Materials Chemistry, 2011, 21(8):2476-2481. doi: 10.1039/c0jm02913k [14] SHI L N, LIN Y M, ZHANG X, et al. Synthesis, Characterization and Kinetics of Bentonite Supported nZⅥ for the Removal of Cr(Ⅵ) from Aqueous Solution[J]. Chemical Engineering Journal, 2011, 171(2):612-617.