-
杂环化合物因其具有种类繁多、结构多样和生物活性广泛等特点,不仅普遍存在于天然药物分子中,同时在人工合成化学药物中也被广泛应用[1-2].据统计,目前临床使用的90%以上的药物为杂环化合物,因此,从大量的杂环化合物中寻找具有高疗效、低毒性、容易获得的候选物仍然是当前新药研发的热点之一[3-4].另一方面,含磷化合物广泛的生物活性及多变的结构类型一直受到人们的关注,许多天然产物药物分子以及合成药物都含有磷原子.近年来本课题组先后设计合成一系列含膦酸酯、膦酰基、硫脲膦酸酯类化合物,发现不同系列化合物表现出抗病毒[5-8]、抗肿瘤[9-12]、杀菌[13-14]等生物活性.其中α-氨基膦酸酯,作为天然氨基酸的含磷类似物,已成为有机磷化学发展的重要组成部分,在药物合成中扮演着重要的角色,是一些药物合成的关键中间体.人们通过对其合成方法[15-17]与生物活性[18-21]的研究,发现其对肾素合成酶、HIV酶、FPT酶、EPSP合成酶及高血压蛋白原酶等具有抑制作用[15, 17-18],从而表现出多种重要的生理活性,广泛应用于医药和农药领域.由此,为了拓宽化合物生物活性并寻找到高活性先导物,基于前期的研究工作[7-13],我们将不同杂环引入氨基膦酸酯中,并优化反应条件,合成了一系列新型杂环膦酸酯衍生物28个,其结构均经IR,(2H,13C,31P,19F)NMR和HRMS(ESI)等确证与表征,合成路线见图 1.生物活性测试结果表明,部分化合物具有抗大肠杆菌、绿脓杆菌或金黄色葡萄球菌等活性;同时,发现化合物A16,A24,A28对肿瘤细胞的抑制活性较好,与对照药剂辛二酰苯胺异羟肟酸(SAHA)接近.在此基础上研究其构效关系,对进一步结构改造与优化具有十分重要的意义.
Synthesis and Bioactivity of Novel Phosphate Derivatives Containing Heterocyclic Moieties
-
摘要: 为了获得广谱、高效的活性先导物,我们在前期研究工作的基础上,结合药物设计原理,采用简便方法合成了一系列新型杂环膦酸酯衍生物,其结构经IR,(1H,13C,31P,19F)NMR和HRMS(ESI)等确证与表征.生物活性测试结果表明,部分化合物具有抗大肠杆菌、铜绿假单胞杆菌及金黄色葡萄球菌等活性,尤其是化合物A4,A8,A22,A24,A27和A28抗菌活性好,与对照药剂氨苄西林(Ampicillin)的MIC接近或相当.同时,发现部分化合物具有抑制肿瘤细胞增殖的作用,其中化合物A24和A28分别对人结肠癌细胞HT29和人肺癌细胞A549的IC50为18.0±0.7 μmol/L和17.1±1.3 μmol/L,接近对照药SAHA(IC50分别为14.3±1.1 μmol/L和12.5±1.8 μmol/L).在此基础上研究其构效关系,对进一步结构改造与优化具有十分重要的意义.Abstract: In order to obtain broad-spectrum and highly effective bioactivity lead compounds, a series of novel phosphonate derivatives containing heterocyclic moieties were synthesized with a simple method based on our preliminary research and combined with the drug design principle. Their structures were confirmed and characterized by IR, (1H, 13C, 31P and 19F) NMR and HRMS (ESI). A test of their bioactivity showed that some compounds had antibacterial activity against E. coli, P. aeruginosa, S. aureus and MRSA (Methicillin-resistant S. aureus) in some degree. Compounds A4, A8, A22, A24, A27 and A28 had a good antibacterial activity close or equal to that of the control agent Ampicillin. At the same time, it was found that compounds A24 and A28 had antitumor activity against tumor cell HT29 and human lung cancer cell A549, their IC50 being 18.0±0.7 μmol/L and 17.1±1.3 μmol/L, respectively, which was close to that of the control drug SAHA, whose IC50 was 14.3±1.1 μmol/L and 12.5±1.8 μmol/L, respectively. Further SAR (structure-activity relationship) studies based on our present results will be of significance for the structural modification and optimization of these compounds.
-
Key words:
- heterocyclic /
- phosphonate /
- synthesis /
- antibacterial activity /
- antitumor activity .
-
表 1 目标化合物的取代基及相关物理数据
化合物 取代基 性状 产率/ % 熔点/ ℃ R1 R2 R3 A1 H Et 3-呋喃基 浅黄色固体 82 145~150 A2 H iPr 3-呋喃基 浅黄色固体 82 137~138 A3 F Et 3-呋喃基 浅黄色固体 72 183~185 A4 F iPr 3-呋喃基 浅黄色固体 74 135~136 A5 H Et 3-噻吩基 白色固体 85 110~112 A6 H iPr 3-噻吩基 白色固体 83 137~138 A7 F Et 3-噻吩基 白色固体 80 101~102 A8 F iPr 3-噻吩基 白色固体 77 126~127 A9 H Et 3-吡啶基 白色固体 87 204~205 A10 H iPr 3-吡啶基 浅黄色固体 84 119~120 A11 F Et 3-吡啶基 浅黄色固体 80 113~114 A12 F iPr 3-吡啶基 浅黄色固体 83 135~136 A13 H Et 6'-甲基-3-吡啶基 白色固体 88 148~149 A14 H iPr 6'-甲基-3-吡啶基 白色固体 81 170~171 A15 F Et 6'-甲基-3-吡啶基 浅黄色固体 71 124~125 A16 F iPr 6'-甲基-3-吡啶基 浅黄色固体 78 143~144 A17 H Et E-3-吡啶丙烯基 浅黄色固体 93 129~130 A18 H iPr E-3-吡啶丙烯基 白色固体 95 177~178 A19 F Et E-3-吡啶丙烯基 白色固体 86 144~145 A20 F iPr E-3-吡啶丙烯基 浅黄色固体 83 127~129 A21 H Et 6-喹啉基 白色固体 86 138~139 A22 H iPr 6-喹啉基 白色固体 89 187~188 A23 F Et 6-喹啉基 浅黄色固体 80 162~163 A24 F iPr 6-喹啉基 浅黄色固体 72 143~144 A25 H Et (1H)-3-吲哚基 白色固体 79 203~204 A26 H iPr (1H)-3-吲哚基 浅黄色固体 81 219~220 A27 F Et (1H)-3-吲哚基 白色固体 76 195~197 A28 F iPr (1H)-3-吲哚基 白色固体 73 212~213 表 2 不同催化剂及其物质的量对产物A1收率的影响
编号 催化剂与中间体4a用量比/mmol 催化剂 (C4H9)4NBr DIPEA DCC DMAP 1 0.5:1 - - - - 2 1.0:1 - - - - 3 1.5:1 - - - - 4 2.0:1 34.6 40.3 - 33.2 5 2.5:1 37.1 41.2 36.9 注“-”表示产物点增加不明显,未分离. 表 3 不同溶剂、反应温度及反应时间对产物A1收率的影响
编号 温度/℃ 时间/h 溶剂 CH2Cl2 CH3COCH3 THF THF* CH3CN C6H5CH3 1 15~20 ℃ 2 - - - - - - 2 保持微沸腾 2 43.2 35.4 50.8 - 47.5 39.1 3 保持微沸腾 3 - - - - - - 4 保持微沸腾 4 - - 67.4 - - - 5 保持微沸腾 5 70.5 62.9 79.7 82.3 67.2 51.0 6 保持微沸腾 6 73.3 - 80.4 81.3 - - 7 保持微沸腾 7 74.6 - 75.1 - - - 注:溶剂沸点:CH2Cl2(39.8 ℃),CH3COCH3(56 ℃),THF(66 ℃),CH3CN(81 ℃),C6H5CH3(110 ℃);THF*为干燥处理. 表 4 目标物对不同细菌的最低抑菌浓度MIC值
/(mg·mL-1) 化合物 R1 R2 R3 MIC/(mg·mL-1) E.coli P.aeruginosa S.aureus N-E.coli N-P.aeruginosa MRSA A1 H Et 16 8 16 >16 >16 >16 A2 H iPr 4 8 4 16 >16 >16 A3 F Et 8 8 16 16 >16 >16 A4 F iPr 1 2 4 16 16 8 A5 H Et 16 16 16 >16 >16 >16 A6 H iPr 16 16 16 >16 >16 >16 A7 F Et 16 8 16 >16 16 >16 A8 F iPr 1 4 4 8 8 16 A9 H Et 16 16 8 >16 >16 >16 A10 H iPr 16 16 16 >16 >16 >16 A11 F Et 16 16 16 >16 >16 >16 A12 F iPr 16 8 8 >16 16 16 A13 H Et 16 16 16 >16 >16 >16 A14 H iPr 16 16 16 >16 >16 >16 A15 F Et 16 16 16 >16 >16 >16 A16 F iPr 16 16 16 >16 >16 >16 A17 H Et >16 16 16 >16 >16 >16 A18 H iPr >16 16 16 >16 >16 >16 A19 F Et >16 16 8 >16 >16 16 A20 F iPr 16 16 16 >16 >16 16 A21 H Et 16 8 4 >16 16 16 A22 H iPr 2 1 8 16 >16 16 A23 F Et 8 16 16 16 16 >16 A24 F iPr 1 8 16 4 8 16 A25 H Et 8 4 16 16 16 16 A26 H iPr 4 16 8 16 8 8 A27 F Et 2 1 1 8 8 4 A28 F iPr 0.25 0.5 4 8 4 8 氨苄西林 0.1 0.05 0.1 2 1 2 注:细菌溶液浓度为1×106 CFU/mL,化合物质量浓度为160 mg/mL. 表 5 目标化合物对肿瘤细胞抑制活性
化合物 抑制率/% 化合物 抑制率/% A549 HT29 HK2 A549 HT29 HK2 A1 20.2±2.3 13.0±3.0 11.3±1.2 A15 16.5±0.7 31.5±11.3 14.3±2.4 A2 16.4±4.2 15.1±1.5 16.5±0.8 A16 24.4±6.8 73.9±1.4 11.6±0.6 A3 19.9±7.3 10.4±3.4 17.1±3.9 A17 7.4±2.7 31.6±6.2 12.6±3.0 A4 19.2±5.5 11.8±2.7 12.8±1.0 A18 8.7±1.2 36.9±5.8 14.7±1.5 A5 15.7±5.2 25.4±2.0 15.5±3.6 A19 11.1±1.6 39.5±4.3 18.3±9.4 A6 19.2±3.3 22.4±3.7 17.4±8.4 A20 10.8±0.2 41.3±3.7 17.6±7.7 A7 25.9±2.1 28.3±3.1 19.5±7.4 A21 31.0±11.9 31.2±2.6 19.7±8.6 A8 26.5±3.2. 20.7±2.2 10.8±9.7 A22 35.2±7.6 37.5±4.0 28.5±3.1 A9 10.0±1.4 23.1±1.8 11.1±2.6 A23 36.0±13.2 40.8±5.1 25.5±6.3 A10 13.7±2.5 26.5±0.7 16.4±3.7 A24 43.6±8.2 78.1± 2.3 17.2±0.9 A11 16.5±2.2 33.7±3.1 15.9±3.0 A25 33.9±6.4 32.3±9.1 18.4±3.2 A12 17.9±2.4 46.7±11.2 17.8±3.2 A26 32.7±9.3 41.1±8.6 14.2±4.1 A13 22.3±5.9 38.7±8.3 18.5±2.8 A27 45.3±4.1 43.8±2.3 13.6±1.5 A14 25.7±2.1 43.6±10.6 18.8±8.1 A28 76.9±3.2 69.6±0.2 16.4±6.8 SAHA 81.6±11.7 82.8±7.3 78.2±13.6 注:采用MTS比色法试验;A549为人肺癌细胞;HT29为人结肠癌细胞;HK20为人肾小管正常细胞;SAHA为阳性对照药. 表 6 化合物A16,A24和A28抗A549,HT29,HK2细胞IC50
化合物 IC50/(μmol·L-1) A549 HT29 HK2 A16 - 36.2±1.2 130.9±0.7 A24 - 18.0±0.7 124.7±1.3 A28 17.1±1.3 34.6±0.9 126.8±2.4 SAHA 12.5±1.8 14.3±1.1 33.7±1.2 注:IC50值表示50%细胞存活浓度. -
[1] DANDIA A, PAREWA V, SHARMA A. An Approach towards Green Switch through Nanocatalysis for the Synthesis of Biodynamic Heterocycles[M] //Green Chemistry: Synthesis of Bioactive Heterocycles. New Delhi: Springer India, 2014: 129-161. [2] COSIMO D A. Privileged Heterocyclic Scaffolds in Chemical Biology and Drug Discovery: Synthesis and Bioactivity[J]. Chemistry of Heterocyclic Compounds, 2017, 53(3): 239. doi: 10.1007/s10593-017-2046-4 [3] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201805014 KONG L B, YAN S J, LIN J. Heterocyclic Ketene Aminals Leading Molecules to Construct Molecular Diversity Fused Heterocyclic Compounds[J]. Progress in Chemistr, 2018, 30(5): 639-657. [4] 陈永飞.具有生物活性杂环化合物的设计、合成及其研究[D].兰州: 兰州大学, 2010. http://cdmd.cnki.com.cn/article/cdmd-10730-2010131898.htm [5] 王伟, 张国平, 宋宝安, 等. O, O'-二烷基-α-(取代苯并噻唑-2-基)氨基-(取代苯基甲基)膦酸酯的合成与抗烟草花叶病毒活性[J].有机化学, 2007, 27(2): 279-284. doi: 10.3321/j.issn:0253-2786.2007.02.021 [6] CHEN M H, CHEN Z, SONG B A, et al. Synthesis and Antiviral Activities of Chiral Thiourea Derivatives Containing an α-Aminophosphonate Moiety[J]. Journal of Agricultural and Food Chemistry, 2009, 57(4): 1383-1388. doi: 10.1021/jf803215t [7] LIU J Z, SONG B A, BHADURY P S, et al. Synthesis and Bioactivities of α-Aminophosphonate Derivatives Containing Benzothiazole and Thiourea Moieties[J]. Phosphorus, Sulfur, and Silicon and the Related Elements, 2012, 187(1): 61-70. doi: 10.1080/10426507.2011.575422 [8] 刘静姿, 胡俊锋, 史大斌, 等.手性膦酸酯硫脲的抗TMV活性及作用机制研究[J].西南师范大学学报(自然科学版), 2015, 40(1): 39-44. doi: http://d.old.wanfangdata.com.cn/Periodical/xnsfdxxb201501008 [9] LIU J Z, SONG B A, FAN H T, et al. Synthesis and in Vitro Study of Pseudo-Peptide Thioureas Containing Α-Aminophosphonate Moiety as Potential Antitumor Agents[J]. European Journal of Medicinal Chemistry, 2010, 45(11): 5108-5112. doi: 10.1016/j.ejmech.2010.08.021 [10] 杨家强, 谷晴, 束波, 等. O, O'-二烷基-α-苯基-α-(取代苯甲酰氧基)-甲基膦酸酯的合成与抗肿瘤活性[J].有机化学, 2013, 33(5): 1113-1118. doi: http://d.old.wanfangdata.com.cn/Periodical/yjhx201305032 [11] LIU J Z, LIAO P, HU J F, et al. Synthesis and Antitumor Activities of Chiral Dipeptide Thioureas Containing an Alpha-Aminophosphonate Moiety[J]. Molecules, 2017, 22(2): 238. doi: 10.3390/molecules22020238 [12] LIAO P, HU S Q, ZHANG H, et al. Study on Anti-Proliferative Activity in Cancer Cells and Preliminary Structure-Activity Relationship of Pseudo-Peptide Chiral Thioureas[J]. Bulletin of the Korean Chemical Society, 2018, 39(3): 300-304. doi: 10.1002/bkcs.11383 [13] 廖鹏.寡肽手性硫脲化合物的合成及生物活性研究[D].贵阳: 贵州医科大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10660-1018224556.htm [14] 杨家强, 胡月维, 谷晴, 等.新型喹啉酮类膦酸酯衍生物的合成与抗菌活性[J].有机化学, 2014, 34(4): 829-834. doi: http://d.old.wanfangdata.com.cn/Periodical/yjhx201404025 [15] TAKAHASHI H, YOSHIOKA M, IMAI N, et al. Simple and Improved Preparation of α-Aminophosphonic Acid Derivatives, Key Building Blocks of Phosphonopeptides[J]. Synthesis, 1994, 1994(8): 763-764. doi: 10.1055/s-1994-25564 [16] 宋宝安, 蒋木庚. α-氨基膦酸及其酯的合成及生物活性的研究进展[J].有机化学, 2004, 24(8): 843-856. doi: 10.3321/j.issn:0253-2786.2004.08.001 [17] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/chin.201235204 ALI SHAFAKAT ALI N, ZAKIR S, PATEL M, et al. Synthesis of New α Aminophosphonate System Bearing Indazole Moiety and Their Biological Activity[J]. ChemInform, 2012, 43(35): 39-43. [18] DENG S L, BAGLIN I, NOUR M, et al. Synthesis of Ursolic Phosphonate Derivatives as Potential Anti-HIV Agents[J]. Phosphorus, Sulfur, and Silicon and the Related Elements, 2007, 182(5): 951-967. doi: 10.1080/10426500601088838 [19] ZHANG G P, HAO G F, PAN J K, et al. Asymmetric Synthesis and Bioselective Activities of α-Aminophosphonates Based on the Dufulin Motif[J]. Journal of Agricultural and Food Chemistry, 2016, 64(21): 4207-4213. doi: 10.1021/acs.jafc.6b01256 [20] HELLAL A, CHAFAA S, CHAFAI N, et al. Synthesis, Antibacterial Screening and DFT Studies of Series of α-Aminophosphonates Derivatives from Aminophenols[J]. Journal of Molecular Structure, 2017, 1134: 217-225. doi: 10.1016/j.molstruc.2016.12.079 [21] AWAD M K, ABDEL-AAL M F, ATLAM F M, et al. Synthesis of New α-Aminophosphonates Containing 3-Amino-4(3H) Quinazolinone Moiety as Anticancer and Antimicrobial Agents: DFT, NBO, and Vibrational Studies[J]. Current Organic Synthesis, 2018, 15(2): 286-296. doi: 10.2174/1570179414666170703141629 [22] KABOUDIN B, MORADI K. A Simple and Convenient Procedure for the Synthesis of 1-Aminophosphonates from Aromatic Aldehydes[J]. Tetrahedron Letters, 2005, 46(17): 2989-2991. doi: 10.1016/j.tetlet.2005.03.037 [23] 崔玉莹, 王宪贝, 李玉坤, 等.金银花、连翘水煎液对金黄色葡萄球菌的抑制作用研究[J].光明中医, 2017, 32(18): 2637-2638. doi: 10.3969/j.issn.1003-8914.2017.18.020 [24] 尤玲.基于M2型丙酮酸酶(PKM2)为靶点的灯盏乙素抗肿瘤机制研究[D].贵阳: 贵州医科大学, 2017.