-
自从布尔代数作为经典二值逻辑所对应的代数系统被提出以来,各种不同逻辑系统所对应的代数系统受到研究人员的广泛关注,并取得了大量的研究成果.在信息科学、计算机科学、控制理论、人工智能等很多重要的领域中,逻辑代数是其推理机制的代数基础.为给不确定信息处理理论提供可靠且合理的逻辑基础,许多学者提出并研究了非经典逻辑系统.目前,大多数学者都认同非交换剩余格为一种最广泛的非可换逻辑代数结构,其中伪BL代数、伪MV代数、伪MTL代数等[1-3]均是非交换剩余格的特殊情况.而滤子是非经典逻辑代数研究领域的一个重要概念,它对各种逻辑系统及与之匹配的逻辑代数的完备性问题的研究发挥着极其重要的作用.近几年,学者们已经在各种逻辑代数框架下提出了多种滤子概念,并获得了许多有价值的研究结果.文献[4]通过讨论模糊正规滤子和模糊布尔滤子之间的关系,解决了伪BL代数上的公开问题.文献[5]研究了剩余格上几类模糊滤子的性质,使剩余格上滤子的结构研究更为清楚.文献[6]在非交换剩余格上引入了子模糊弱布尔滤子的概念,并研究了其特征刻画.因此,在众多滤子理论研究的基础上系统地分析出各种滤子概念之间的相互关系及层次结构就显得尤为重要[7-10].基于此目的,本文运用模糊集的运算方法和原理,在非交换剩余格上引入了模糊极滤子的概念,并研究了其表示定理和特征性质,获得了在一定条件下非交换剩余格上模糊极滤子与模糊子正蕴涵滤子相互等价的结论.研究结果不但使非交换剩余格上的模糊滤子理论得到进一步充实和丰富,还使得概念间的层次关系更加的清晰和完善,而且为研究基于非交换剩余格的逻辑系统的结构特征提供了理论基础.
The Characteristics of Fuzzy Fantastic Filters on the Non-Commutative Residuated Lattice
-
摘要: 运用模糊集的运算方法和原理,在非交换剩余格上引入了模糊极滤子的概念,并研究了其表示定理和特征性质,获得了在一定条件下非交换剩余格上模糊极滤子与模糊子正蕴涵滤子相互等价的结论.研究结果进一步拓展了非交换剩余格上的模糊滤子理论,为其在逻辑代数及计算机信息处理等方面的应用奠定了理论基础.Abstract: By using the principles and methods of fuzzy sets, in this paper, the concept of "fuzzy fantastic filter" is introduced in the non-commutative residuated lattice. By studying its properties and characterizations, the equivalent representation theorems under certain conditions are given between the fuzzy fantastic filter and the fuzzy sub positive implicative filter. The results of the study further extend the fuzzy filter theory of the non-commutative residuated lattice, and lay a theoretical foundation for the application of algebraic logic and computer information processing.
-
Key words:
- fuzzy logic /
- non-commutative residuated lattice /
- fuzzy filter /
- fuzzy fantastic filter .
-
[1] doi: http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216229244/ GEORGESCU G. Pseudo-MV Algebras[J]. Mult-Valued Log, 2001, 6(1-2): 95-135. [2] doi: http://d.old.wanfangdata.com.cn/Periodical/sddxxb201508007 DINOLA A, GEORGESCU G. Pseudo-BL-Algebras: Part Ⅰ[J]. Mult-Valued Log, 2002, 8(5-6): 673-714. [3] ZHU Y Q, XU Y. On Fliter Theory of Residuated Lattices[J]. Information Sciences, 2010, 180(19): 3614-3632. doi: 10.1016/j.ins.2010.05.034 [4] doi: http://cn.bing.com/academic/profile?id=d3c3cdfb492088d1406dc6bafab7f5a3&encoded=0&v=paper_preview&mkt=zh-cn WANG W, Xin X L. On Fuzzy Filters of Pseudo-BL-Algebras[J]. Fuzzy Sets and Systems, 2011, 162(4): 27-38. [5] 刘莉君.剩余格上几类n重模糊滤子的等价刻画[J].西南大学学报(自然科学版), 2017, 39(9): 107-112. doi: http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201709016 [6] doi: http://cn.bing.com/academic/profile?id=afeebe704ce5115058074ee8119a980d&encoded=0&v=paper_preview&mkt=zh-cn WANG W, XU Y, TONG D, et al. Some Results on Fuzzy Weak Boolean Filters of Non-Commutative Residuated Lattices[J]. Springer India, 2014, 250: 97-103. [7] GASSE B, DESCHRIJVER G, CORNELIS C, et al. Filter of Residuated Lattices and Triangle Algebras[J]. Information Sciences, 2010, 180(16): 3006-3020. doi: 10.1016/j.ins.2010.04.010 [8] doi: https://www.researchgate.net/publication/301644706_Obstinate_weak_implicative_and_fantastic_filters_of_non_commutative_residuated_lattices SHOKOOFEH G. Obstinate, Weak Implicative and Fantastic Filter of Non-Commutative Residuated Lattices[J]. Afrika Matematika, 2017, 28(1-2): 68-84. [9] DUMITRU B, DANA P. A New Approach for Classification of Filter in Residuated Lattices[J]. Fuzzy Sets and Systems, 2015, 260: 121-130. doi: 10.1016/j.fss.2014.07.022 [10] BAKHSHI M. Generalized Fuzzy Filter in Non-Commutative Residuated Lattices[J]. Afrika Matematika, 2014, 25(2): 289-305. doi: 10.1007/s13370-012-0115-5
计量
- 文章访问数: 872
- HTML全文浏览数: 654
- PDF下载数: 65
- 施引文献: 0