-
植物内生菌(Endophyte)指在生活史的部分阶段或全部阶段生活在植物的根、茎或者叶片等组织内,但不会引起病害症状的一类微生物[1].常见的植物内生菌包括真菌、放线菌和细菌等,它们是植物微生物态系统的重要组成部分,几乎每一种植物体内都能发现内生菌,这些内生菌通过产生对植物具有保护或者促进作用的代谢产物促进植物生长并最终有利于自身的生长[2-3].植物内生菌还能产生各种具有生物活性的次级代谢产物,例如紫杉醇等[4].部分植物内生菌产生的次级代谢产物被发现在医药工业与病虫害防控上具有潜在的应用价值,使得植物内生菌成为了近年来研究的热点[5].
许多研究已经证实昆虫的共生肠道微生物对宿主的生长产生着有利的作用,例如通过调节微生物的代谢,提升消化食物的效率使得昆虫能够从食物中获得更多的营养,以及保护宿主抵抗病原菌的感染等[6-8].昆虫肠道微生物也与昆虫的农药抗性相关,小菜蛾肠道微生物中的肠球菌可以提升宿主的农药耐药性,而另一种微生物沙雷氏菌则会降低宿主的农药抗性[9].许多昆虫以采食植物组织为生,在这个过程中必然会摄入大量植物内生菌进入昆虫肠道中,而这些植物内生菌与昆虫肠道微生物组的关系较为复杂,人们对此还缺乏深入的了解.部分植物内生真菌可以赋予宿主一定的抗虫能力,例如定植在玉米中的白僵菌可以减少欧洲玉米螟的危害[10].韩国学者的一项研究表明昆虫肠道微生物群的主要影响因素包括栖息地、食物、发育阶段和昆虫的种类等[11].中国学者发现在采食桑叶的不同昆虫(家蚕、桑剑纹夜蛾和桑螟)肠道中,微生物的多样性存在较大的差异[12].而另一项研究则发现,5种采食苏铁的昆虫具有相似的肠道核心微生物组[13].
草地贪夜蛾是一种危害巨大的迁飞性农林害虫,可采食玉米、水稻、高粱和甘蔗等重要农作物.该害虫自2019年1月入侵中国以来,已经蔓延至全国21个省份,严重威胁我国粮食生产.本课题组前期对草地贪夜蛾肠道优势细菌进行了初步的分离鉴定工作,并对取食不同植物的草地贪夜蛾肠道微生物群也进行了比较,对研究草地贪夜蛾核心肠道微生物提供了重要的理论支持[14-15].鉴于草地贪夜蛾的肠道微生物中必然有一些源自于其取食植物的内生菌,因此研究其食材中的内生菌就成为了进一步解析草地贪夜蛾肠道微生物群的基础.基于此,本研究以采集自重庆巫山地区爆发草地贪夜蛾虫害的玉米田内的玉米嫩叶为样本,通过传统培养法以及16S rDNA测序对其中的植物内生细菌进行了初步分离鉴定,以期为后续的研究奠定基础.
Isolation and Identification of Endophytic Bacteria of Maize Leaf in Chongqing Area and Comparison Between Maize Microbes and Gut Bacteria of Spodoptera frugiperda
-
摘要: 为进一步了解重庆地区玉米叶内生细菌的组成以及这些内生细菌与入侵重庆地区草地贪夜蛾肠道微生态的相互关系,以采集自巫山地区被草地贪夜蛾入侵的玉米地里的玉米嫩叶为材料,运用传统微生物培养方法尝试对其内生细菌进行初步的分离培养,并通过16S rDNA测序开展了优势菌的属水平鉴定.此次共分离获得了22个细菌分离株,经16S rDNA序列同源性分析,将它们归类到11个分类单元,分属克雷伯氏菌属(Klebsiella)、不动杆菌属(Acinetobacter)、寡养单胞菌属(Stenotrophomonas)、芽孢杆菌属(Bacillus)、肠球菌属(Enterococcus)、微杆菌属(Microbacterium)、鞘氨醇杆菌属(Sphingobacterium)、金黄杆菌属(Chryseobacterium)、无色杆菌属(Achromobacter)和丛毛单胞菌属(Comamonas).与前期研究得到的该地区草地贪夜蛾肠道微生物菌群数据比较可以发现,玉米内生细菌中包括克雷伯氏菌属(Klebsiella)、不动杆菌属(Acinetobacter)、肠球菌属(Enterococcus)、鞘氨醇杆菌属(Sphingobacterium)和金黄杆菌属(Chryseobacterium)在内的5个属可以在草地贪夜蛾肠道中分离到,表明草地贪夜蛾肠道微生物多数可能源自其食物,但是草地贪夜蛾肠道微生物中常见的假单胞菌属(Pseudomonas)、肠杆菌属(Enterobacter)、类芽孢杆菌属(Paenibacillus)、短波单胞菌属(Brevundimonas)和气单胞菌属(Aeromonas)并未在玉米嫩叶中分离到,说明它们可能是主要存在于草地贪夜蛾肠道中的微生物.该研究对草地贪夜蛾所取食的玉米叶中内生细菌的种类进行了初步分析,为后续研究玉米叶内生细菌和草地贪夜蛾肠道微生物的相互关系奠定了基础.Abstract: In order to understand the composition of endophytic bacteria in the maize leaf which were found in fall armyworm (FAW, Spodoptera frugiperda), the dominant bacteria from the samples collected from maize fields in Wushan of Chongqing were isolated with the traditional culture method and identified with 16SrDNA sequencing. A total of 22 isolates of endophytic bacteria were obtained, and were clustered in 16SrDNA homology analyses into 11 taxa, i.e. Klebsiella, Acinetobacter, Stenotrophomonas, Bacillus, Enterococcus, Microbacterium, Sphingobacterium, Chryseobacterium, Achromobacter and Comamonas. In comparison with our previous study about gut bacteria of FAW, 5 genera including Klebsiella, Acinetobacter, Enterococcus, Sphingobacterium and Chryseobacterium were also isolated from the gut or feces of FAW, suggesting that a large amount of the gut bacteria may come from bacterial endophytes of maize. However, we failed to isolate genera like Pseudomonas, Enterobacter, Paenibacillus, Brevundimonas and Aeromonas, indicating that these bacteria may mainly exist in the gut of FAW. In conclusion, our study has identified the generic composition of the endophytic bacteria in maize leaf and determined their abundance, which may serve as a basis for future work on understanding the interaction between FAW core intestinal microorganisms and maize endophytes.
-
Key words:
- Chongqing area /
- fall armyworm (FAW, Spodoptera frugiperda) /
- gut bacteria /
- endophytic bacteria /
- maize leaf .
-
表 1 巫山地区爆发草地贪夜蛾玉米地中玉米叶的内生细菌分离株种属统计
OTU ID 菌株名 NCBI ID RDP ID OTU1 WSma3 WSma4 WSma5 WSma11 WSma12 Acinetobacter Acinetobacter OTU2 WSma10 WSma14 WSma16 Microbacterium Microbacterium OTU3 WSma6 WSma7 Bacillus Bacillus OTU4 WSma8 WSma20 Enterococcus Enterococcus OTU5 WSma18 WSma19 Sphingobacterium Sphingobacterium OTU6 WSma1 WSma2 Klebsiella Klebsiella OTU7 WSma21 WSma22 Chryseobacterium Chryseobacterium OTU8 WSma9 Enterococcus Enterococcus OTU9 WSma15 Stenotrophomonas Stenotrophomonas OTU10 WSma17 Achromobacter Achromobacter OTU11 WSma13 Comamonas Comamonas -
[1] CLAY K. Fungal Endophytes of Grasses:a Defensive Mutualism Between Plants and Fungi[J]. Ecology, 1988, 69(1):10-16. doi: 10.2307/1943155 [2] MANO H, MORISAKI H. Endophytic Bacteria in the Rice Plant[J]. Microbes and Environments, 2008, 23(2):109-117. doi: 10.1264/jsme2.23.109 [3] doi: http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ029993499/ STROBEL G, DAISY B, CASTILLO U, et al. Natural Products from Endophytic Microorganisms[J]. Journal of Natural Products, 2004, 67(2):257-268. [4] STIERLE A, STROBEL G, STIERLE D. Taxol and Taxane Production by Taxomyces-Andreanae, an Endophytic Fungus of Pacific Yew[J]. Science, 1993, 260(5105):214-216. doi: 10.1126/science.8097061 [5] MASAND M, JOSE P, MENGHANI E, et al. Continuing Hunt for Endophytic Actinomycetes as a Source of Novel Biologically Active Metabolites[J]. World Journal of Microbiology Biotechnology, 2015, 31(12):1863-1875. doi: 10.1007/s11274-015-1950-y [6] HOOPER L V, GORDON J I. Commensal Host-Bacterial Relationships in the Gut[J]. Science, 2001, 292(5519):1115-1118. doi: 10.1126/science.1058709 [7] KAUFMAN M G, KLUG M J. The Contribution of Hindgut Bacteria to Dietary Carbohydrate Utilization by Crickets (Orthoptera:Gryllidae)[J]. Comparative Biochemistry and Physiology Part A:Physiology, 1991, 98(1):117-123. doi: 10.1016/0300-9629(91)90588-4 [8] DILLON R, CHARNLEY K. Mutualism between the Desert Locust Schistocerca gregaria and its Gut Microbiota[J]. Research Microbiology, 2002, 153(8):503-509. doi: 10.1016/S0923-2508(02)01361-X [9] XIA X F, SUN B T, GURR G M, et al. Gut Microbiota Mediate Insecticide Resistance in the Diamondback Moth, Plutella xylostella (L.)[J]. Frontiers in Microbiology, 2018, 9:00025-1-00025-10. doi: 10.3389/fmicb.2018.00251 [10] BING L A, LEWIS L C. Suppression of Ostrinia nubilalis (Hübner) (Lepidoptera:Pyralidae) by Endophytic Beauveria bassiana (Balsamo) Vuillemin[J]. Environmental Entomology, 1991, 20(4):1207-1211. doi: 10.1093/ee/20.4.1207 [11] YUN J H, ROH S W, WHON T W, et al. Insect Gut Bacterial Diversity Determined by Environmental Habitat, Diet, Developmental Stage, and Phylogeny of Host[J]. Applied Environmental Microbiology, 2014, 80(17):5254-5264. doi: 10.1128/AEM.01226-14 [12] CHEN B S, DU K Q, SUN C, et al. Gut Bacterial and Fungal Communities of the Domesticated Silkworm (Bombyx mori) and Wild Mulberry-Feeding Relatives[J]. The ISME Journal, 2018, 12(9):2252-2262. doi: 10.1038/s41396-018-0174-1 [13] SALZMAN S, WHITAKER M, PIERCE NE. Cycad-Feeding Insects Share a Core Gut Microbiome[J]. Biological Journal of Linnean Society, 2018, 123(4):728-738. doi: 10.1093/biolinnean/bly017 [14] 唐运林, 吴燕燕, 顾偌铖, 等重庆地区草地贪夜蛾肠道细菌的分离鉴定[J].西南大学学报(自然科学版), 2019, 41(7):8-14. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201907002&flag=1 [15] 顾偌铖, 唐运林, 吴燕燕, 等.重庆地区取食高粱的草地贪夜蛾与玉米黏虫肠道细菌比较[J].西南大学学报(自然科学版), 2019, 41(8):6-13. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201908002&flag=1 [16] TAMURA K, STECHER G, PETERSON D, et al. MEGA6:Molecular Evolutionary Genetics Analysis Version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12):2725-2729. doi: 10.1093/molbev/mst197 [17] WALLACE J G, MAY G, Endophytes: The Other Maize Genome[M]//BENNETZEN J, FLINT-GARCIA S, HIRSCH C, et al. The Maize Genome. Cham: Springer International Publishing, 2018: 213-246. [18] GOND S K, BERGEN M S, TORRES MS, et al. Endophytic Bacillus spp. Produce Antifungal Lipopeptides and Induce Host Defence Gene Expression in Maize[J]. Microbiological Research, 2015, 172:79-87. doi: 10.1016/j.micres.2014.11.004 [19] CHELIUS M K, TRIPLETT E W. Immunolocalization of Dinitrogenase Reductase Produced by Klebsiella pneumoniae in Association with Zea mays L.[J]. Appl Environ Microbiol, 2000, 66(2):783-787. doi: 10.1128/AEM.66.2.783-787.2000 [20] 顾偌铖, 唐运林, 吴燕燕, 等.重庆巫山地区采食玉米的草地贪夜蛾肠道细菌的分离鉴定补遗[J].西南大学学报(自然科学版), 2019, 41(8):1-5. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201908001&flag=1 [21] GAO J L, SUN P, MAO X J, et al. Pedobacter Zeae Sp. Nov., an Endophytic Bacterium Isolated from Maize Root[J]. Internalional Journal of Systematic Evolutionary Microbiology, 2017, 67(2):231-236. doi: 10.1099/ijsem.0.001603 [22] HANNULA S E, ZHU F, HEINEN R, et al. Foliar-Feeding Insects Acquire Microbiomes from the Soil Rather than the Host Plant[J]. Nature Communications, 2019, 10(1):1254-1-1254-9. [23] JAYA M, ANKITA D, ANJALI S, et al. Genome Sequence of Acinetobacter Sp. Strain HA, Isolated from the Gut of the Polyphagous Insect Pest Helicoverpa Armigera[J]. Journal of Bacteriology, 2012, 194(18):5156. doi: 10.1128/JB.01194-12