-
DNA宏条形码(DNA metabarcoding)技术是一种以DNA条形码技术与下一代测序技术为基础、可用于分析混合样品DNA以获得群类物种多样性的方法[1-3]. DNA条形码技术是利用一段标准的DNA条形码序列来对物种进行鉴定与分类,由加拿大动物学家Hebert最早提出[4].传统的sanger测序仅能对单一样品进行DNA测序,而高通量测序技术可对混合DNA进行同时测序,可获得大量具有生物学信息的DNA片段,进行物种多样性研究及组分分析[5].随着DNA条形码与测序技术的不断进步以及条形码数据库的逐步完善,DNA宏条形码技术现已成为现代生物学研究热点,广泛应用于生物多样性研究[6-8].
DNA宏条形码自创立以来,已被应用于诸多领域. Farruggia等利用此技术检测放牧食草动物粪便,分析其膳食结构及植物多样性[9];宋飏等利用COI基因分析了太白山土壤动物多样性[10];Taberlet等利用高山草甸土壤样品分析了植物多样性,并为开展生物多样性调查的全面标准化提供了可能性[11].此外,DNA宏条形码技术还应用于食性分析[12]、古生物研究[13]、生态评估[14]等领域.
莼菜(Brasenia schreberi)是睡莲科水生草本植物,富含蛋白质、膳食纤维和多糖物质,具有降血脂、降血糖、抗氧化和抗癌等多种生理活性[15-16].前人研究结果表明,土壤微生物多样性将直接影响到作物的正常生长[17].本文选取ITS(Internal Transcribed Spacer)基因序列作为分子标记,应用DNA宏条形码技术对莼菜大田不同种植年限的土壤真菌多样性进行研究,为莼菜资源的保护及科学利用提供数据支持.
A DNA-Metabarcoding-Based Study of the Diversity of Soil Fungi in the Brasenia schreberi Field
-
摘要: 高通量测序与DNA条形码结合产生的DNA宏条形码技术(DNA-Metabarcoding),能快速鉴定混合样本中的物种,现已成为检测群类物种多样性和丰富度的常用方法.本试验采用这一方法分析了莼菜大田不同种植年限土壤真菌多样性,结果表明:10年生土壤中含有最多的真菌种类,多样性及丰富度最高;在属水平上表现为蛙粪霉属、裂梗霉属、酵母属等占优势;群类组成分析显示,种植年限的变化对土壤真菌群落组成有一定的影响;聚类分析中10年与15年生莼菜土壤物种多样性相似度较高.Abstract: DNA-Metabarcoding, which is a combination of high-throughput sequencing and DNA barcoding, enables the rapid identification of species in mixed samples and has become a common method for detecting species diversity and abundance. In an experiment reported herein, this method was used to analyze the diversity of soil fungi in Brasenia schreberi J. F. Gmel fields with different cultivation years. The results indicated the soil on which B. schreberi had been planted for 10 years contained the most fungal species with the highest diversity and abundance. At the genus level, Trichoderma, Phyllospora and Saccharomyces were predominant. Group composition analysis showed that the change of the cultivation year had a certain influence on the composition of soil fungal communities. In the cluster analysis, the similarity of soil species diversity between the 10th and 15th years was higher, and they were clustered together. The results of this study may lay a theoretical foundation for the scientific cultivation of B. schreberi.
-
Key words:
- cultivation year /
- Brasenia schreberi /
- DNA barcoding /
- high-throughput sequencing /
- identification .
-
表 1 样地信息
种植年限 编号 采样地点 海拔/m 1年 1y 30.148 898°N,108.532 048°E 1 153 30.148 675°N,108.534 808°E 1 125 30.147 865°N,108.537 806°E 1 135 5年 5y 30.148 623°N,108.531 898°E 1 148 30.147 956°N,108.532 045°E 1 162 30.148 507°N,108.533 205°E 1 154 10年 10y 30.146 095°N,108.532 602°E 1 135 30.146 568°N,108.533 052°E 1 145 30.146 523°N,108.532 257 2°E 1 158 15年 15y 30.148 114°N,108.53 3097°E 1 158 30.148 265°N,108.532 056°E 1 147 30.149 002°N,108.534 026°E 1 143 20年 20y 30.144 992°N,108.533 312°E 1 167 30.144 356°N,108.533 405°E 1 152 30.142 506°N,108.532 356°E 1 125 表 2 OTU划分和分类地位鉴定结果统计
样本 门 纲 目 科 属 种 1y 235 211 204 181 156 238 5y 680 585 568 517 431 718 10y 1060 893 879 809 707 1 138 15y 984 883 868 808 695 1 067 20y 789 674 659 619 519 838 表 3 菌群微生物多样性指数
样本 Chao1指数 ACE指数 Simpson指数 Shannon-Wiener指数 1y 261.43 266.74 0.869 223 4.17 5y 873.00 873.00 0.986 820 7.92 10y 1 363.90 1 376.50 0.991 564 8.43 15y 1 274.11 1 275.98 0.987 933 8.14 20y 965.10 973.81 0.984 933 7.52 注:每个样本的测序深度相同. 表 4 各分类水平的微生物类群数统计
样本 门 纲 目 科 属 种 1y 7 18 45 70 83 138 5y 7 21 54 95 136 244 10y 7 22 61 110 173 295 15y 7 19 57 87 119 210 20y 7 22 52 94 136 217 -
[1] POMPANON F, COISSAC E, TABERLET P, et al. A New Way of Analysing Biodiversity[J]. Biofutur, 2011, 30(319):30-32. [2] COISSAC E, RIAZ T, PUILLANDRE N. Bioinformatic Challenges for DNA Metabarcoding of Plants and Animals[J]. Molecular Ecology, 2012, 21(8):1834-1847. doi: 10.1111/j.1365-294X.2012.05550.x [3] 邢冉冉, 吴亚君, 陈颖.宏条形码技术在食品物种鉴定中的应用及展望[J].食品科学, 2018, 39(13):280-288. doi: 10.7506/spkx1002-6630-201813042 [4] HEBERT P D N, CYWINSKA A, BALL S L, et al. Biological Identifications through DNA Barcodes[J]. Proceedings of the Royal Society of London Series B:Biological Sciences, 2003, 270(1512):313-321. doi: 10.1098/rspb.2002.2218 [5] TABERLET P, COISSAC E, POMPANON F, et al. Towards Next-Generation Biodiversity Assessment Using DNA Metabarcoding[J]. Molecular Ecology, 2012, 21(8):2045-2050. doi: 10.1111/j.1365-294X.2012.05470.x [6] SCHUSTER S C. Next-Generation Sequencing Transforms Today's Biology[J]. Nature Methods, 2008, 5(1):16-18. doi: 10.1038/nmeth1156 [7] 陈炼, 吴琳, 刘燕, 等.环境DNA metabarcoding及其在生态学研究中的应用[J].生态学报, 2016, 36(15):4573-4582. doi: http://d.old.wanfangdata.com.cn/Periodical/stxb201615002 [8] 王荣亮, 段润平, 包丹, 等.从物种识别到生物多样性评估——DNA条形码与DNA metabarcoding技术[J].生物学通报, 2016, 51(4):10-13. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swxtb201604003 [9] FARRUGGIA A, POMPANON F, GINANE C, et al. Reconstituting the Diet of Grazing Domestic Herbivores Using Metabarcoding[J]. Fourrages, 2012, (209):43-51. [10] 宋飏, 黄原. DNA复合条形码在太白山土壤动物多样性研究中的应用[J].生态学报, 2016, 36(14):4531-4539. doi: http://d.old.wanfangdata.com.cn/Periodical/stxb201614033 [11] TABERLET P, PRUD'HOMME S M, CAMPIONE E, et al. Soil Sampling and Isolation of Extracellular DNA from Large Amount of Starting Material Suitable for Metabarcoding Studies[J]. Molecular Ecology, 2012, 21(8):1816-1820. doi: 10.1111/j.1365-294X.2011.05317.x [12] LUTHEDS. Cover Cropping Alters the Diet of Arthropods in a Banana Plantation:A Metabarcoding Approach[J]. PLoS One, 2014, 9(4):e93740. DOI:10.1371/journal. pone. 0093740. [13] MURRAY D C, HAILE J, DORTCH J, et al. Scrapheap Challenge:A Novel Bulk-Bone Metabarcoding Method to Investigate Ancient DNA in Faunal Assemblages[J]. Scientific Reports, 2013, 3:3371. doi: 10.1038/srep03371 [14] KELLY R P, PORT J A, YAMAHARA K M, et al. Using Environmental DNA to Census Marine Fishes in a Large Mesocosm[J]. PLoS One, 2014, 9(1):e86175. DOI:10.1371/journal. pone. 0086175. [15] 吴永尧, 陈建英.莼菜营养成份的初步研究[J].资源开发与市场, 2000, 16(6):342-366. doi: 10.3969/j.issn.1005-8141.2000.06.009 [16] 刘美玉, 习向银, 罗丽娟, 等.莼菜资源利用研究综述及展望[J].长江蔬菜, 2011(10):7-10. doi: 10.3865/j.issn.1001-3547.2011.10.002 [17] 纳小凡, 郑国琦, 彭励, 等.不同种植年限宁夏枸杞根际微生物多样性变化[J].土壤学报, 2016, 53(1):241-252. doi: http://d.old.wanfangdata.com.cn/Periodical/trxb201601025 [18] 胡凯, 王微.不同种植年限桉树人工林根际土壤微生物的活性[J].贵州农业科学, 2015, 43(12):105-109. doi: 10.3969/j.issn.1001-3601.2015.12.027 [19] 谢光新, 张荣先, 黄雪飞, 等.不同生长年限茶树根际微生物分布的差异[J].湖北农业科学, 2012, 51(15):3177-3179. doi: 10.3969/j.issn.0439-8114.2012.15.007 [20] 徐红梅, 倪方方, 宋腾蛟, 等.高通量测序揭示杭白芍根际真菌群落年际变化[J].浙江中医药大学学报, 2016, 40(12):942-947. doi: http://d.old.wanfangdata.com.cn/Periodical/zjzyxyxb201612020 [21] 吴雪莲, 周倩, 辜夕容, 等.西南林区3株外生菌根真菌对酸铝胁迫的营养响应与抗铝性[J].西南大学学报(自然科学版), 2015, 37(8):13-19. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=2015-08-013&flag=1 [22] SCOLESG J. International Barcode of Life:Evolution of a Global Research Community[J]. Genome, 2015, 58(5):151-162. doi: 10.1139/gen-2015-0094 [23] 王苗苗, 王孝仕, 左龙亚, 等.基于ITS序列的竹亚科植物分子鉴定研究[J].西南大学学报(自然科学版), 2018, 40(7):44-50. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=20180707&flag=1 [24] PIÑOL J, MIR G, GOMEZ-POLO P, et al. Universal and Blocking Primer Mismatches Limit the Use of High-Throughput DNA Sequencing for the Quantitative Metabarcoding of Arthropods[J]. Molecular Ecology Resources, 2015, 15(4):819-830. doi: 10.1111/1755-0998.12355 [25] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/pca.2732 RACLARIU A C, HEINRICH M, ICHIM M C, et al. Benefits and Limitations of DNA Barcoding and Metabarcoding in Herbal Product Authentication[J]. Phytochemical Analysis, 2018, 29(2):123-128.