-
由Lutwak引入并在众多数学家的推动下,Brunn-Minkowski理论核心在近20年内发展成Lp Brunn-Minkowski理论(参见文献[1-13]).该理论中的根本性和基础性概念之一是凸体的Lp表面积测度(参见文献[14]).设p∈
$ {\mathbb{R}}$ ,K是$ {\mathbb{R}}^2$ 中含原点于内部的凸体,则凸体K的Lp表面积测度SP(K,·)是单位球面Sn-1上的Borel测度.对任意Borel子集ω⊆Sn-1,其中gK是定义在∂K上的广义Gauss映射.围绕Lp表面积的Minkowski问题(即Lp Minkowski问题)是Lp Brunn-Minkowski理论的基石(参见文献[15-17]). Lp表面积测度的总值Sp(K,Sn-1)称为K的Lp表面积. L1表面积是熟知的表面积,而L0表面积是体积,精确地讲,S0(K)=nV(K). Brunn-Minkowski理论的核心之一是Brunn-Minkowski不等式(参见文献[18-23]).
设K和L是n维欧氏空间中的凸体,则
等式成立当且仅当K和L位似.就凸体的Lp表面积,张高勇提出了如下猜想:
设K,L是
$ {\mathbb{R}}^n$ 中含原点于内部的凸体,0<p<1,则当n=2时,改记Lα(K)=S1-α(K),称为凸体K的α-周长.张高勇猜想的平面情形改写为如下不等式:
其中0<α<1.本文就此问题做初步的讨论,将证明如下结果:
定理1 若K,L分别是质心在原点的正n边形域和圆盘,则不等式(3)成立.
证 对平面上含原点于内部的凸体K,由α-周长的定义可知:对任意t>0,有
由此正齐次性,不等式(3)的等价形式是
其中t1,t2>0.基于此事实,不妨假设K是单位圆盘B的外接正n边形域.并证明:
其中ε>0.
由于Lα为旋转不变量,不妨设K的一个顶点在x轴上,于是K的边上的单位外法向量角度为
进而可知
这里S(K,·)简写为SK表示表面积,δθi表示集中于θi的概率点测度.从而可以得到凸体K的α-周长为
可直接计算圆盘
接下来,计算Kε=K+εB的α-周长Lα(Kε).当
$ {\rm{ - }}\frac{\pi }{n} \le \theta \le \frac{\pi }{n}$ 时,由支撑函数的定义支撑函数hKε(θ)会出现两种情况:当θ=θi时,hKε(θ)=1+ε;当θ∈
$ \left( { - \frac{{\left( {2k - 1} \right)\pi }}{n}, \frac{{\left( {2k - 1} \right)\pi }}{n}} \right), k \in {\mathbb{Z}} $ 时,hKε(θ)=$ \frac{{{\rm{cos}}\theta }}{{{\rm{cos}}\left( {\frac{\pi }{n}} \right)}} + \varepsilon $ .则其中
$ {\mathscr{H}}^1$ 是单位圆周上的弧长测度.由于K在关于绕原点转角$ \frac{{2k\pi }}{n}\left( {k \in \mathbb{Z}} \right)$ 的旋转变换上是不变的,故已知
$ \frac{{{\rm{cos}}\theta }}{{{\rm{cos}}\left( {\frac{\pi }{n}} \right)}}$ ≥1,结合积分中值定理得到由(5)-(8)式,并对结果等价处理,得
为了完成证明,需证明
令
$ u = \frac{{\tan \left( {\frac{\pi }{n}} \right)}}{{\frac{\pi }{n}}}$ ,取(10)式不等号左侧部分得到对(11)式求导,得
因为
$ u = \frac{{\tan \left( {\frac{\pi }{n}} \right)}}{{\frac{\pi }{n}}}$ ≥1,uε≥ε,所以令
对(13)式求导,得
由(12),(14)式可以得到复合函数f(g(x))单调递减.
求极限
证毕.
本文给出了0<p<1时平面情形下特殊凸体的证明,该结果对Lp表面积测度的Brunn-Minkowski不等式及相关不等式的研究具有重要参考意义.
The α-Length of Planar Convex Bodies and Isoperimetric Inequalities
-
摘要: Brunn-Minkowski不等式是凸几何分析的重要研究内容.目前,关于体积等几何量的Brunn-Minkowski不等式已广为人知,并在数学各个分支中扮演着重要的角色.关于凸体表面积的Brunn-Minkowski不等式作为Aleksandrov-Fenchel不等式的特殊情况也得到确证.但在Lp Brunn-Minkowski理论中,Lp表面积测度的Brunn-Minkowski不等式仍是一个重要的公开问题,不论是对0<p<1,还是p>1的情形,都没有行之有效的方法来证明相关猜测.基于Minkowski加法,利用单调有界定理和积分中值定理研究了平面凸体的α-周长,提出了两凸体关于α-周长的Brunn-Minkowski型不等式,并对两凸体分别为正n边形和单位圆盘的情形给出了证明.
-
关键词:
- 凸体 /
- α-周长 /
- Brunn-Minkowski不等式
Abstract: The Brunn-Minkowski inequality is an important research content of convex geometry analysis. At present, the Brunn-minkowski inequality about volume and other geometric quantities is widely known and plays an important role in various branches of mathematics. Brunn-Minkowski inequality of convex body surface area as a special case of Aleksandrov-Fenchel inequality has also been confirmed. But in Lp Brunn-Minkowski theory, the Brunn-minkowski inequality of Lp surface area measurement is still an important open problem. There is no effective method to prove the related conjecture for 0 < p < 1 and p > 1. In this paper, based on the addition of Minkowski, the monotone bounded theorem and integral mean value theorem are used to study the α-perimeter of convex body in the plane. The Brunn-Minkowski type inequality about α-perimeter is put forward and proved when two convex bodies are a regular n polygon and a unit disc, respectively.-
Key words:
- convex body /
- α-perimeter /
- Brunn-Minkowski inequality .
-
[1] FIREY W J. p-Means of Convex Bodies[J]. Mathematica Scandinavica, 1962, 10:17. doi: 10.7146/math.scand.a-10510 [2] doi: http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232084947/ PETTY C M. Geominimal Surface Area[J]. Geometriae Dedicata, 1974, 3(1):77-97. [3] OSSERMAN R. The Isoperimetric Inequality[J]. Bulletin of the American Mathematical Society, 1978, 84(6):1182-1239. doi: 10.1090/S0002-9904-1978-14553-4 [4] BONNESEN T, FENCHEL W. Theory of Convex Bodies[M]. New York:BCS Associates, 1987. [5] LUTWAK E. The Brunn-Minkowski-Firey Theory. I. Mixed Volumes and the Minkowski Problem[J]. Journal of Differential Geometry, 1993, 38(1):131-150. doi: 10.4310/jdg/1214454097 [6] LUTWAK E. The Brunn-Minkowski-Firey Theory Ⅱ[J]. Advances in Mathematics, 1996, 118(2):244-294. doi: 10.1006/aima.1996.0022 [7] THOMPSON A C. Minkowski Geometry[M]. Cambridge:Cambridge University Press, 1996. [8] CHAVEL I. Isoperimetric Inequalities (Constant Curvature)[M]. Cambridge:Cambridge University Press, 2001. [9] GARDNER R J. The Brunn-Minkowski Inequality[J]. Bulletin of the American Mathematical Society, 2002, 39(3):355-406. doi: 10.1090/S0273-0979-02-00941-2 [10] SANTALÍ L A, KAC M. Integral Geometry and Geometric Probability[M]. Cambridge:Cambridge University Press, 2004. [11] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=91062ec63389c20bef550067e25b6fc1 BOROCZKY K J, TRINH H. The Planar Lp-Minkowski Problem for 0 < p < 1[J]. Analysis of PDEs, 2016, 22:1610. [12] GARDNER R J. Geometric Tomography[M]. Cambridge:Cambridge University Press, 2014. [13] GRUBER P M. Convex and Discrete Geometry[M]. Berlin:Springer, 2007. [14] SCHNEIDER R. Convex Bodies:the Brunn-Minkowski Theory[M]. Cambridge:Cambridge University Press, 2014. [15] BÖRÖCZKY K, LUTWAK E, YANG D, et al. The Log-Brunn-Minkowski Inequality[J]. Advances in Mathematics, 2012, 231(3-4):1974-1997. doi: 10.1016/j.aim.2012.07.015 [16] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_gr-qc%2f0506117 BÖRÖCZKY K, LUTWAK E, YANG D, et al. The Logarithmic Minkowski Problem[J]. Journal of the American Mathematical Society, 2013, 26(3):831-852. [17] BÖRÖCZKY K, LUTWAK E, YANG D, et al. Affine Images of Isotropic Measures[J]. Journal of Differential Geometry, 2015, 99(3):407-442. doi: 10.4310/jdg/1424880981 [18] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1311.4955 BUSEMANN H, PETTY C M. Problems on Convex Bodies[J]. Mathematica Scandinavica, 1956, 4(4):88-94. [19] BLASCHKE W. Reden und Reisen Eines Geometers[M]. Berlin:East, 1957. [20] BUSEMANN H. Convex Surfaces[M]. New York:Interscience, 1958. [21] ZHU G X. The Lp Minkowski Problem for Polytopes for 0 < p < 1[J]. Metric Geometry, 2015, 269(4):1070-1094. [22] 杨林, 罗淼, 王贺军. Lp对偶Brunn-Minkowski不等式[J].西南大学学报(自然科学版), 2017, 39(10):79-83. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201710012&flag=1 [23] 夏落燕, 方牛发.一个加强的平面Minkowski混合面积不等式[J].西南师范大学学报(自然科学版), 2016, 41(6):27-30. doi: http://d.old.wanfangdata.com.cn/Periodical/xnsfdxxb201606008
计量
- 文章访问数: 787
- HTML全文浏览数: 630
- PDF下载数: 138
- 施引文献: 0