-
文献[1]首先提出了模糊集合的概念,随后人们把模糊集和度量问题结合起来,从不同的角度定义了模糊度量空间的概念[2-4],并研究了它们的一些性质.受概率度量空间定义的启发,文献[5]利用两点距离的不确定性,给出了模糊度量(简称为KM模糊度量)的概念.文献[6]对KM模糊度量进行了改进,提出了现在被称之为GV模糊度量的新概念,并给出了模糊度量导出的拓扑,证明了该拓扑是第一可数和Hausdorff的.
由于GV模糊度量被广泛地应用在彩色图像处理[7-8]和算法分析[9-12]中,越来越多的学者投入到对它的研究中.已有研究表明,每个度量可以导出一个GV模糊度量.反之,每个GV模糊度量可以生成一个可度量化的拓扑[5].文献[13]证明了存在不可完备化的GV模糊度量空间,这就与经典的度量空间有很大的区别.
有界性是度量空间理论中的一个重要概念.文献[6]定义了空间子集的模糊有界性,并用有界性定义了紧致性.文献[14]进一步给出了模糊有界、模糊半有界和模糊全有界的概念,并研究了它们之间的关系.这些不同的概念反映了GV模糊度量空间中丰富的结构.因此,进一步刻画这些概念的内在特性具有重要的意义.
Bounded Sets of Fuzzy Metric Spaces
-
摘要: 研究了Gregori和Veeramani意义下的模糊度量空间的有界性问题.提出了模糊强有界集和模糊弱有界集的概念.利用割度量和邻域等方法,得到了模糊强有界、模糊有界、模糊弱有界和模糊无界等性质的若干刻画,进一步深化了模糊度量空间的理论.Abstract: This paper is designed to study systematically the boundedness on fuzzy metric spaces, in the sense of Gregori and Veeramani. The new concepts of strong boundedness and weak boundedness are introduced. By using the methods such as cut distance and neighborhood, the properties of strongly bounded fuzzy sets, bounded fuzzy sets, weakly bounded fuzzy sets and unbounded fuzzy sets are characterized. The obtained results deepen the theoretical researches on fuzzy metric spaces.
-
[1] ZADEH L A. Fuzzy Sets[J]. Information and Control, 1965, 8(3):338-353. doi: 10.1016/S0019-9958(65)90241-X [2] doi: http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216044445/ DENG Z K. Fuzzy Pseudo-Metric Spaces[J]. Journal of Mathematical Analysis and Applications, 1982, 86(1):74-95. [3] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_gr-qc%2f0011076 ERCEG M A. Metric Spaces in Fuzzy Set Theory[J]. Journal of Mathematical Analysis and Applications, 1979, 69(1):205-230. [4] KALEVA O, SEIKKALA S. On Fuzzy Metric Spaces[J]. Fuzzy Sets and Systems, 1984, 12(3):215-229. doi: 10.1016/0165-0114(84)90069-1 [5] doi: http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ024567904/ KRAMOSIL I, MICHÁLEK J. Fuzzy Metric and Statistical Metric Space[J]. Kybernetika Praha, 1975, 11(5):336-344. [6] GEORGE A, VEERAMANI P. On Some Results in Fuzzy Metric Spaces[J]. Fuzzy Sets and Systems, 1994, 64(3):395-399. doi: 10.1016/0165-0114(94)90162-7 [7] GREGORI V, MORILLAS S, SAPENA A. Examples of Fuzzy Metrics and Applications[J]. Fuzzy Sets and Systems, 2011, 170(1):95-111. doi: 10.1016/j.fss.2010.10.019 [8] 施成湘.基于邻域特征的彩色图像分割方法[J].西南师范大学学报(自然科学版), 2015, 40(2):106-110. doi: http://d.old.wanfangdata.com.cn/Periodical/xnsfdxxb201502019 [9] MORILLAS S, GREGORI V, PERIS-FAJARNÉS G, et al. A New Vector Median Filter Based on Fuzzy Metrics[M]//Lecture Notes in Computer Science. Berlin, Heidelberg:Springer, 2005:81-90. [10] MORILLAS S, GREGORI V, PERIS-FAJARNÉS G, et al. A Fast Impulsive Noise Color Image Filter Using Fuzzy Metrics[J]. Real-Time Imaging, 2005, 11(5-6):417-428. doi: 10.1016/j.rti.2005.06.007 [11] ROMAGUERA S, SAPENA A, TIRADO P. The Banach Fixed Point Theorem in Fuzzy Quasi-Metric Spaces with Application to the Domain of Words[J]. Topol Appl, 2007, 154(10):2196-2203. doi: 10.1016/j.topol.2006.09.018 [12] 尹大平, 杨明歌, 邓磊.模糊度量空间中广义压缩映射的不动点的存在性[J].西南大学学报(自然科学版), 2014, 36(2):92-95. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=2014-02-092&flag=1 [13] GREGORI V, ROMAGUERA S. On Completion of Fuzzy Metric Spaces[J]. Fuzzy Sets and Systems, 2002, 130(3):399-404. doi: 10.1016/S0165-0114(02)00115-X [14] doi: http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025558249/ GEORGE A, VEERAMANI P. Compact and Bounded Sets in Fuzzy Metric Spaces[J]. Int J of Fuzzy Mathematics, 2000(8):975-980. [15] SCHWEIZER B, SKLAR A. Statistical Metric Spaces[J]. Pacific J Math, 1960, 10(1):313-334. doi: 10.2140/pjm.1960.10.313 [16] 杨洋, 吴健荣.关于模糊拟度量诱导的双拓扑空间的一些性质[J].苏州科技大学学报(自然科学版), 2017, 34(4):14-19. doi: 10.3969/j.issn.1672-0687.2017.04.003
计量
- 文章访问数: 734
- HTML全文浏览数: 581
- PDF下载数: 115
- 施引文献: 0