-
南川大树茶是重庆地区的一种独特的地方品种资源,具有明显的原始特征[1],叶片大,节间长,角质层较厚,芽叶肥壮,且比当地多数中小叶种发芽早[2],有较高的开发利用价值. 2012年,“南川大树茶”获得了地理标志认证和地理标志证明商标,目前在南川区德隆乡茶树村已经形成了“南川大树茶扦插繁育、生产技术”等技术规范,大树茶仿原生态栽培技术初获成功[3].有关研究表明[4],南川大树茶属大叶种,儿茶素质量分数丰富,咖啡碱质量分数较高,推测南川大树茶适制红碎茶,滋味较好.
工夫红茶是中国特有的茶类,也是世界最早的红茶花色,是重要的出口茶类[5].近年来,红茶的消费量逐渐增长,传统工夫红茶的生产得以恢复,生产规模逐年扩大,引起茶叶界的重视.目前,关于工夫红茶适制品种以及加工过程的研究报道很多,但南川大树茶作为特殊的地方资源,关于其加工的研究却鲜有报道.因此本实验以南川大树茶1芽2叶为原料,加工工夫红茶,研究分析加工过程中感官品质、主要品质成分的变化规律,与当地栽培品种云南大叶种比较,分析两种茶的差异,挖掘南川大树茶的品质特色,并为确定大树红茶的最佳工艺参数提供一定的理论依据,促进大树红茶的生产加工利用.
Analysis of Quality Characteristics of Camellia nanchuanica During Primary Processing of Black Tea
-
摘要: 以南川大树茶春季1芽2叶为原料,加工传统工夫红茶,研究感官风味及主要品质成分在加工中的变化规律,并以云南大叶种红茶为对照,评价大树茶红茶的适制性及品种特色.结果表明:在南川大树茶红茶加工过程中,水浸出物和茶多酚总量逐渐减少;儿茶素总量大幅减少,除没食子儿茶素没食子酸酯(GCG)在加工中有所增加外,其余7种儿茶素质量分数在加工中均大幅减少.没食子酸(GA)在加工过程中质量分数显著增加.揉捻后,茶黄素总量及茶黄素(TF)、茶黄素-3-没食子酸酯(TF-3-G)、茶黄素-3'-没食子酸酯(TF-3'-G)、茶黄素双没食子酸酯(TFDG)4个组分质量分数都急剧增加,之后的工序中有增有减,只有TFDG持续积累,且是质量分数最高的组分.茶红素质量分数先增多后减少,而茶褐素在整个加工过程中持续累积.游离氨基酸总量在加工中有所增加,鲜叶含24.11 mg/g,毛茶中达到最大值36.34 mg/g.茶氨酸、天冬氨酸、谷氨酸等质量分数较高,茶氨酸、谷氨酸等随着加工的进行质量分数减少,而天冬氨酸、天冬酰胺、谷氨酰胺等质量分数增加;绝大多数氨基酸经萎凋后质量分数都大幅上升;从发酵结束到烘干的过程中,所有的氨基酸质量分数都有所增加.感官审评表明,整个加工中,发酵80 min时滋味最好,甜醇爽口;综合得分最高的是大树茶红茶,条索紧结,橙黄明亮,甜醇鲜爽,有甜香.相较之下,大树茶汤色不如云南大叶种,但香气更优,整体品质更佳.Abstract: In this experiment, Camellia nanchuanica with a bud and two leaves, was used as the material to process orthodox black tea. The changes of each major quality component during processing were studied. With C. sinensis var. assamica in Yunnan as the CK, the adaptability of processing and variety characteristics of C. nanchuanica were evaluated. The results showed that during the processing of black tea, the total amount of water extracts and tea polyphenols decreased gradually; the total amount of catechins was greatly reduced; of the 8 catechins studied, the contents of 7 decreased significantly, with the exception of gallocatechin gallate (GCG), and the content of gallic acid(GA)increased significantly. The total amount of theaflavins and the four monomers:theaflavin (TF), theaflavin-3-gallate (TF-3-G), theaflavin-3'-gallat (TF-3'-G) and theaflavin digallat (TFDG) increased sharply after rolling, only TFDG continued to increase in the subsequent processes, and it was always the component with the highest content. The content of thearubigin increased first and then decreased, while the tea brown pigment was steadily accumulated throughout processing. The total amount of free amino acids increased during processing, reaching a maximum of 36.34 mg/g in raw black tea. Theanine, aspartic acid and glutamic acid had higher content. The content of theanine and glutamic were decreased with the processing, Aspartic acid, asparagine, and glutamine increased. Most amino acids increased significantly after withering, and all amino acids increased from the end of fermentation to drying. The sensory evaluation showed that after 80 minutes' fermentation the taste of the product was the best, sweet and mellow and refreshing. The primary tea of C. nanchuanica had the highest comprehensive score, its knot being tight and the soup being orange and bright in color, sweet and refreshing in taste, and sweet and fragrant in smell. Compared with the black tea, the fermentation time is shorter in 80 minutes, which is beneficial to processing. Comparatively, the soup color of CK was better, but its aroma was not as good as C. nanchuanica black tea, which was better in overall quality.
-
Key words:
- Camellia nanchuanica /
- orthodox processing /
- characteristic component /
- sensory evaluation .
-
表 1 儿茶素组分等洗脱程序
时间/min B相/% 0 15 15 18 25 35 40 45 45 15 48 15 表 2 氨基酸组分洗脱程序
时间/min B相/% 0 2 5 3 10 7 15 10 25 12 30 27 40 50 45 2 50 2 表 3 南川大树红茶加工过程样感官审评
样品 外形(25%) 汤色(10%) 香气(25%) 滋味(30%) 叶底(10%) 总分 评语 分数 评语 分数 评语 分数 评语 分数 评语 分数 dsc-3 乌褐紧结 85 浅黄尚亮 78 青气 83 青臭味 75 多青条 75 80.6 dsc-4 乌褐尚润 88 黄尚亮 84 青气微甜 85 较醇和,酸 78 有青条 78 82.0 dsc-5 乌润紧结 88 橙黄明亮 87 甜香,花果香 88 醇和、甜 88 红匀较亮 87 87.8 dsc-6 乌润紧结 89 橙黄明亮 89 甜香、花果香 87 甜,微收敛 86 较匀齐 85 87.2 dsc-7 乌润紧结 89 橙黄较亮 87 清香、花果香 85 甜微酸,爽口 87 红匀尚亮 87 87.0 dsc-8 乌润紧结 89 橙黄尚亮 87 甜香、果香 89 甜微酸,鲜爽 85 红匀尚亮 86 87.3 dsc-9 乌润紧结 90 橙黄带红 89 甜香、果香 87 甜微酸,鲜爽 87 红匀较亮 87 88.0 CK 乌褐尚紧 88 橘红明亮 92 有甜香 85 甜爽稍薄 86 较红尚软 85 86.8 表 4 主要品质成分在红茶加工中的变化
/% 样品 茶多酚 咖啡碱 水浸出物 茶黄素 茶红素 茶褐素 dsc-1 22.50±0.69a 4.82±0.05cd 50.80±0.56a 0 0 0 dsc-2 20.75±0.64b 4.70±0.01e 49.71±0.32a 0.07±0.01e 3.62±0.01g 1.52±0.01h dsc-3 18.49±0.67c 4.68±0.01e 48.42±0.87b 0.71±0.06d 4.82±0.08c 1.96±0.02g dsc-4 17.17±0.25cd 4.70±0.01e 46.59±0.38bc 0.88±0.03bc 5.15±0.03b 2.41±0.02f dsc-5 15.83±0.16d 4.84±0.015c 46.50±0.01bc 0.83±0.00c 4.47±0.06d 2.81±0.02e dsc-6 15.76±0.17d 4.60±0.02f 45.83±0.43bc 0.82±0.02c 4.29±0.05e 2.92±0.12d dsc-7 15.01±0.37de 4.79±0.02d 45.05±0.09c 0.83±0.03c 4.03±0.08f 3.08±0.09c dsc-8 14.44±0.40de 5.16±0.01a 44.92±0.01cd 0.91±0.01b 4.39±0.06de 3.42±0.04b dsc-9 14.18±0.34e 4.92±0.01b 47.16±0.17b 0.90±0.03b 4.31±0.10e 3.47±0.15b CK 12.76±0.15f 2.35±0.02g 44.98±0.28cd 1.41±0.03a 5.08±0.09a 5.32±0.09a 注:小写字母不同表示差异有统计学意义,p<0.05. 表 5 儿茶素类及GA在红茶加工中的变化
/(mg·g-1) 样品 EGCG EGC EC ECG CG C GC GCG GA 儿茶素总量 dsc-1 152.51±1.32a 15.48±0.14a 5.30±0.03a 28.28±0.57a 0.63±0.00a 2.17±0.04a 3.25±0.02a 1.82±0.09d 0.43±0.01e 207.2±1.75a dsc-2 130.64±0.92b 14.17±0.06b 4.24±0.02b 25.22±0.28b 0.53±0.01b 1.49±0.07b 2.71±0.01b 2.05±0.07d 0.73±0.01d 181.1±1.10b dsc-3 39.30±0.21c 2.77±0.13c 2.45±0.16c 15.67±0.17c 0.48±0.01bc 0.93±0.01c 0.97±0.12d 10.60±0.65a 4.00±0.11a 72.4±0.23c dsc-4 26.67±0.90d 1.79±0.23d 1.41±0.07d 11.56±0.33d 0.46±0.04c 0.63±0.01d 0.87±0.05de 10.71±0.30a 3.81±0.10a 53.8±1.71d dsc-5 17.72±0.24e 1.31±0.05de 0.80±0.03e 8.55±0.23e 0.35±0.03d 0.39±0.01e 0.74±0.02e 9.97±0.25ab 3.47±0.09b 39.8±0.74e dsc-6 17.34±0.30ef 1.17±0.02e 0.77±0.05e 7.89±0.21f 0.31±0.01d 0.38±0.02e 0.73±0.07e 9.96±0.08ab 3.62±0.05ab 38.6±0.42e dsc-7 16.19±0.38f 0.91±0.13e 0.58±0.06f 7.20±0.05g 0.27±0.04de 0.30±0.00f 0.75±0.04e 9.69±0.10b 3.44±0.01b 35.9±0.23f dsc-8 13.70±0.06g 0.83±0.01e 0.57±0.05f 6.27±0.01h 0.24±0.06e 0.22±0.02g 0.83±0.07e 9.44±0.11b 3.42±0.16b 32.1±0.95g dsc-9 12.50±0.46g 0.95±0.08e 0.26±0.01g 8.31±0.05e 0.22±0.01e 0.11±0.02h 0.51±0.01f 8.04±0.37c 2.59±0.06c 30.8±0.72g CK 3.23±0.15h 1.00±0.02e 2.59±0.05c 6.80±0.19g 0.23±0.01e 0.82±0.00c 1.30±0.05c 1.92±0.03d 0.66±0.02d 18.55±0.42h 注:EGCG为表没食子儿茶素没食子酸酯,ECG为表儿茶素没食子酸酯,EC为表儿茶素,EGC为表没食子儿茶素,CG为儿茶素没食子酸酯,C为儿茶素,GC为没食子儿茶素,GCG为没食子儿茶素没食子酸酯,GA为没食子酸. 表 6 氨基酸组分在红茶加工中的变化
/(mg·g-1) 样品 dsc-1 dsc-2 dsc-3 dsc-4 dsc-5 dsc-6 dsc-7 dsc-8 dsc-9 CK ASP 1.87±0.06e 3.48±0.19c 2.11±0.05de 2.12±0.09d 2.29±0.10d 2.28±0.15d 2.22±0.06d 4.02±0.10b 4.82±0.04a 1.91±0.02e GLU 3.83±0.22a 2.51±0.10b 2.37±0.06bc 2.23±0.02bc 2.24±0.08bc 2.15±0.05c 2.09±0.07c 2.32±0.11bc 2.50±0.03b 4.08±0.34a ASN 0.77±0.03e 3.42±0.10a 3.35±0.09a 3.16±0.03bc 3.22±0.10b 3.10±0.00c 3.23±0.03b 3.00±0.01c 3.33±0.01ab 1.07±0.02d GLN 1.07±0.18c 2.33±0.10a 2.02±0.05b 1.99±0.00b 1.98±0.06b 1.93±0.01b 1.98±0.05b 2.03±0.05b 2.04±0.01b 2.20±0.00a SER 2.91±0.15a 2.92±0.10a 2.52±0.07b 2.12±0.02c 2.28±0.09bc 2.29±0.15bc 2.39±0.09b 2.36±0.04bc 3.04±0.09a 1.79±0.03d β-ALA 0.11±0.01c 0.14±0.01b 0.15±0.01b 0.15±0.00b 0.14±0.00b 0.14±0.01b 0.15±0.01b 0.15±0.01b 0.18±0.02a 0.10±0.01c THR 0.50±0.02c 0.69±0.02a 0.66±0.02ab 0.63±0.01ab 0.64±0.02ab 0.60±0.04b 0.61±0.01b 0.65±0.01ab 0.67±001a 0.55±0.01c PRO 0.24±0.01d 0.52±0.03c 0.66±0.01b 0.66±0.01b 0.69±0.05ab 0.71±0.04ab 0.62±0.06b 0.63±0.01b 0.74±0.01ab 0.75±0.01ab γ-GABA 0.24±0.01d 0.74±0.02c 0.90±0.03b 0.88±0.06b 0.93±0.04b 0.91±0.07b 0.92±0.01b 0.99±0.00ab 1.08±0.00ab 0.3±0.06d THEA 6.54±0.25a 6.17±0.40a 5.06±0.16bc 4.92±0.06bc 4.90±0.17bc 4.51±0.33c 4.55±0.10c 4.99±0.02bc 5.38±0.02bc 6.84±0.02a ALA 0.45±0.01d 0.90±0.06b 0.47±0.02d 0.23±0.04e 0.41±0.21d 0.66±0.08c 0.68±0.09c 1.10±0.02a 1.12±0.02a 1.01±0.02ab ARG 2.26±0.19ab 2.20±0.06b 2.46±0.13ab 2.54±0.07a 2.44±0.25ab 1.98±0.03b 1.96±0.40b 1.88±0.03b 2.01±0.01b 2.31±0.03ab VAL 0.52±0.03d 1.52±0.05a 1.46±0.04ab 1.44±0.01ab 1.45±0.05ab 1.35±0.09b 1.34±0.01b 1.44±0.01ab 1.50±0.00a 0.84±0.01c MET 0.05±0.00b 0.06±0.01ab 0.07±0.02ab 0.06±0.00ab 0.06±0.00ab 0.06±0.01ab 0.05±0.01b 0.01±0.00c 0.04±0.00b 0.04±0.00b CYS 0.08±0.00e 0.11±0.01d 0.07±0.00e 0.08±0.00e 0.08±0.00e 0.07±0.00e 0.07±0.00e 0.12±0.00c 0.15±0.00b 0.55±0.02a ILE 0.44±0.04g 1.19±0.05b 1.10±0.03c 1.06±0.03cd 1.03±0.01d 0.94±0.06e 0.99±0.00de 1.22±0.01ab 1.26±0.04ab 0.81±0.01f LEU 0.88±0.06f 1.88±0.07c 1.79±0.07cd 1.73±0.02de 1.75±0.05de 1.65±0.11e 1.77±0.01d 1.69±0.02de 2.25±0.03a 2.01±0.06b TRP 0.64±0.05d 1.29±0.10a 1.03±0.01b 0.98±0.07b 0.95±0.07bc 0.86±0.06c 0.94±0.05bc 1.27±0.03a 1.30±0.03a 0.88±0.07c PHE 0.17±0.01e 1.43±0.04a 1.21±0.04b 1.14±0.01bc 1.13±0.02bc 1.06±0.08c 1.05±0.15c 1.09±0.01c 1.18±0.01bc 0.71±0.01d LYS 0.27±0.02f 0.94±0.10d 1.12±0.05b 0.96±0.07cd 1.00±0.05cd 1.02±0.00cd 1.03±0.01d 0.86±0.01e 0.92±0.02de 1.75±0.03a TYR 0.26±0.07d 0.59±0.05c 0.91±0.06a 0.86±0.01ab 0.88±0.03ab 0.77±0.06b 0.74±0.04b 0.88±0.01ab 0.93±0.03a 0.67±0.03bc 合计 24.11±0.07d 35.03±0.05a 31.49±0.01bc 29.94±0.03c 30.49±0.05c 29.04±0.03c 29.38±0.03c 32.70±0.07b 36.34±0.05a 31.17±0.06b 注:ASP为天冬氨酸,GLU为谷氨酸,ASN为天冬酰胺,GLN为谷氨酰胺,SER为丝氨酸,β-ALA为β-丙氨酸,THR为苏氨酸,PRO为脯氨酸,γ-GABA为γ-氨基丁酸,THEA为茶氨酸,ALA为丙氨酸,ARG为精氨酸,VAL为缬氨酸,MET为甲硫氨酸,CYS为半胱氨酸,ILE为异亮氨酸,LEU为亮氨酸,TRP为色氨酸,PHE为苯丙氨酸,LYS为赖氨酸,TYR为酪氨酸. -
[1] 曾建明.南川野生茶树[J].中国茶叶, 1999, 21(1):37. doi: http://d.old.wanfangdata.com.cn/Thesis/Y1460073 [2] 张承春, 廖代钧, 陈令先, 等.南川大叶茶野生植被调查[J].茶叶, 1981(1):25-29. doi: http://www.cnki.com.cn/Article/CJFDTotal-CHAY198101007.htm [3] 何思佳.南川区大树茶繁育及栽培技术项目初见成效[J].植物医生, 2017, 30(11):5. [4] 王鲽.南川野生大茶树特征成分分析研究[D].重庆: 西南大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10635-2009105533.htm [5] 冯林, 沈强, 何萍, 等.中国功夫红茶研究进展[J].贵州茶叶, 2012, 40(3):11-16. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204862559 [6] 国家茶叶质量监督检疫中心.茶叶感官审评方法: GB/T 23776-2009[S].北京: 中国标准出版社, 2009. [7] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.茶磨碎试样的制备及其干物质含量测定: GB/T 8303-2013[S].北京: 中国标准出版社, 2013. [8] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.茶水浸出物测定: GB/T 8305-2013[S].北京: 中国标准出版社, 2013. [9] 中国国家标准化管理委员会.茶叶中茶多酚和儿茶素类含量的检测方法: GB/T 8313-2008[S].北京: 中国标准出版社, 2008. [10] 程启坤.红茶色素的系统分析法[J].中国茶叶, 1981, 3(1):17. [11] LI N N, LIU Y, ZHAO Y, et al. Simultaneous HPLC Determination of Amino Acids in Tea Infusion Coupled to Pre-Column Derivatization with 2, 4-Dinitrofluorobenzene[J]. Food Analytical Methods, 2016, 9(5):1307-1314. doi: 10.1007/s12161-015-0310-8 [12] OZDEMIR F, GOKALP H Y, NAS S. Effects of Shooting Period, Times within Shooting Periods and Processing Systems on the Extract, Caffeine and Crude Fiber Contents of Black Tea[J]. Z Lebensm Unters Forsch, 1993, 197(4):358-362. doi: 10.1007/BF01242061 [13] LEE L S, KIM Y C, PARK J D, et al. Changes in Major Polyphenolic Compounds of Tea (Camellia Sinensis) Leaves during the Production of Black Tea[J]. Food Science and Biotechnology, 2016, 25(6):1523-1527. doi: 10.1007/s10068-016-0236-y [14] ÖLMEZ H, YILMAZ A. Changes in Chemical Constituents and Polyphenol Oxidase Activity of Tea Leaves with Shoot Maturity and Cold Storage[J]. Journal of Food Processing and Preservation, 2009, 34:653-665. doi: 10.1111/j.1745-4549.2009.00423.x [15] DAVIES A P, GOODSALL C, CAI Y, et al. Black Tea Dimeric and Oligomeric Pigments-Structures and Formation[M]//Plant Polyphenols 2. Boston, MA:Springer US, 1999:697-724. [16] 胡艳萍, 姜东华, 姚学坤, 等.云南大叶种茶无性系良种加工不同产品儿茶素的差异分析[J].茶叶通讯, 2016, 43(2):30-33. doi: http://d.old.wanfangdata.com.cn/Periodical/cytx201602008 [17] 徐懿, 屠幼英, 钟小玉.茶儿茶素异构化研究现状[J].中草药, 2008, 39(7):1106-1109. doi: 10.3321/j.issn:0253-2670.2008.07.050 [18] KOMATSU Y, SUEMATSU S, HISANOBU Y, et al. Effects of pH and Temperature on Reaction Kinetics of Catechins in Green Tea Infusion[J]. Bioscience, Biotechnology, and Biochemistry, 1993, 57(6):907-910. doi: 10.1271/bbb.57.907 [19] 坂本彬, 井上博之, 中川致之. 12種類の紅茶の化学成分[J].日本食品科学工学会誌, 2012, 59(7):326-330. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_3167543 [20] OKINDA OWUOR P, OBANDA M. The Changes in Black Tea Quality Due to Variations of Plucking Standard and Fermentation Time[J]. Food Chemistry, 1998, 61(4):435-441. doi: 10.1016/S0308-8146(97)00092-7 [21] OWUOR P. Clonal Variation in the Individual Theaflavin Levels and Their Impact on Astringency and Sensory Evaluations[J]. Food Chemistry, 1995, 54(3):273-277. doi: 10.1016/0308-8146(95)00046-L [22] 易晓芹, 周原也, 贺麟, 等.不同产地红茶主要品质成分分析[J].茶叶通讯, 2017, 44(2):30-33. doi: 10.3969/j.issn.1009-525X.2017.02.006 [23] YE Y L, YAN J N, CUI J L, et al. Dynamic Changes in Amino Acids, Catechins, Caffeine and Gallic Acid in Green Tea during Withering[J]. Journal of Food Composition and Analysis, 2018, 66:98-108. doi: 10.1016/j.jfca.2017.12.008 [24] VUONG Q V, BOWYER M C, ROACH P D. L-Theanine:Properties, Synthesis and Isolation from Tea[J]. Journal of the Science of Food and Agriculture, 2011, 91(11):1931-1939. doi: 10.1002/jsfa.4373 [25] ROBERTS G R, SANDERSON G W. Changes Undergone by Free Amino-Acids During the Manufacture of Black Tea[J]. Journal of the Science of Food and Agriculture, 1966, 17(4):182-188. doi: 10.1002/jsfa.2740170409 [26] SCHARBERT S, HOLZMANN N, HOFMANN T. Identification of the Astringent Taste Compounds in Black Tea Infusions by Combining Instrumental Analysis and Human Bioresponse[J]. Journal of Agricultural and Food Chemistry, 2004, 52(11):3498-3508. doi: 10.1021/jf049802u [27] doi: http://cn.bing.com/academic/profile?id=545a6a6613cef57c34d4b3874b4df19c&encoded=0&v=paper_preview&mkt=zh-cn MARTINS S I F S, JONGEN W M F, VAN BOEKEL M A J S. A Review of Maillard Reaction in Food and Implications to Kinetic Modelling[J]. Trends in Food Science & Technology, 2000, 11(9-10):364-373. [28] TAKEO T, MAHANTA P K. Comparison of Black Tea Aromas of Orthodox and CTC Tea and of Black Teas Made from Different Varieties[J]. Journal of the Science of Food and Agriculture, 1983, 34(3):307-310. doi: 10.1002/jsfa.2740340315 [29] TUAN H Q, THINH N D, MINH TU N T. Amino Acid Composition as Precursor Flavors Changes in Tea Leaves (camellia Sinensis) during Orthodox Black Tea Manufacturing[J]. Vietnam Journal of Science and Technology, 2017, 55(1):1. doi: 10.15625/0866-708X/55/1/8318 [30] 俞露婷, 袁海波, 王伟伟, 等.红茶发酵过程生理生化变化及调控技术研究进展[J].中国农学通报, 2015, 31(22):263-269. doi: 10.11924/j.issn.1000-6850.casb15030076 [31] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027588656 SHU K, KUMAZAWA K, MASUDA H, et al. Sensory and Structural Characterisation of an Umami Enhancing Compound in Green Tea (mat-cha)[J]. Developments in Food Science, 2006, 43(43):181-184. [32] 帅玉英, 张涛, 江波, 等.茶氨酸的研究进展[J].食品与发酵工业, 2008, 34(11):117-123. doi: http://d.old.wanfangdata.com.cn/Periodical/trcwyjykf200304025 [33] 王秀梅.祁门红茶加工过程中代谢谱分析及其品质形成机理研究[D].合肥: 安徽农业大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10364-1013163305.htm [34] KIRIMURA J, SHIMIZU A, KIMIZUKA A, et al. Contribution of Peptides and Amino Acids to the Taste of Foods[J]. Journal of Agricultural and Food Chemistry, 1969, 17(4):689-695. doi: 10.1021/jf60164a031 [35] 谢志英, 黄立文, 王秀华, 等.云南大叶种茶不同品种儿茶素组分含量分析[J].中国农学通报, 2014, 30(19):146-150. doi: 10.11924/j.issn.1000-6850.2014-0262 [36] 方骏婷.祁门红茶加工过程中主要化学成分分析[D].合肥: 安徽农业大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10364-1016258205.htm [37] 王自琴.四川引进茶树品种茗科1号、铁观音和黄棪加工红茶与绿茶的品质比较[D].雅安: 四川农业大学, 2015. http://xueshu.baidu.com/usercenter/paper/show?paperid=03add62f9be505cee79402c005ff6df7&site=xueshu_se [38] 罗理勇, 曾亮, 李洪军.川红工夫加工过程多酚类物质及其相关酶的变化规律[J].食品科学, 2015, 36(3):57-62. doi: http://d.old.wanfangdata.com.cn/Periodical/spkx201503011 [39] 王川丕, 诸力, 周苏娟, 等.儿茶素EGCG与其空间异构体GCG的抗氧化活性和反应活性的密度泛函理论研究[J].天然产物研究与开发, 2015, 27(4):645-650. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trcwyjykf201504018