留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

粘性Cahn-Hilliard方程的高精度线性化差分方法

上一篇

下一篇

李娟. 粘性Cahn-Hilliard方程的高精度线性化差分方法[J]. 西南大学学报(自然科学版), 2020, 42(1): 51-58. doi: 10.13718/j.cnki.xdzk.2020.01.008
引用本文: 李娟. 粘性Cahn-Hilliard方程的高精度线性化差分方法[J]. 西南大学学报(自然科学版), 2020, 42(1): 51-58. doi: 10.13718/j.cnki.xdzk.2020.01.008
Juan LI. A High-Order Linear Difference Method for the Viscous Cahn-Hilliard Equation[J]. Journal of Southwest University Natural Science Edition, 2020, 42(1): 51-58. doi: 10.13718/j.cnki.xdzk.2020.01.008
Citation: Juan LI. A High-Order Linear Difference Method for the Viscous Cahn-Hilliard Equation[J]. Journal of Southwest University Natural Science Edition, 2020, 42(1): 51-58. doi: 10.13718/j.cnki.xdzk.2020.01.008

粘性Cahn-Hilliard方程的高精度线性化差分方法

  • 基金项目: 国家自然科学基金面上项目(11671081);江苏省高校自然科学研究面上项目(16KJD110002);江苏省高等教育教学改革项目(2017JSJG541)
详细信息
    作者简介:

    李娟(1983-), 女, 副教授, 主要从事偏微分方程数值解研究 .

  • 中图分类号: O241.82

A High-Order Linear Difference Method for the Viscous Cahn-Hilliard Equation

  • 摘要: 讨论粘性Cahn-Hilliard方程的高精度线性化差分方法.利用降阶法对粘性Cahn-Hilliard方程建立三层线性化紧差分格式.用离散能量分析法证明差分格式的唯一可解性及在L-范数下的收敛性,其收敛阶为时间方向二阶、空间方向四阶.最后,通过数值算例验证了差分格式的理论结果.
  • 加载中
  • 表 1  h=0.001时(26)-(28)式的最大模误差和时间收敛阶

    τ H(hτ) order1
    0.05 3.141×10-4 1.863 6
    0.025 8.632×10-5 1.961 6
    0.012 5 2.216×10-5 2.020 5
    0.006 25 5.462×10-6 /
    下载: 导出CSV

    表 2  τ=0.001时(26)-(28)式的最大模误差和空间收敛阶

    h H(hτ) order2
    0.1 4.630×10-7 4.024 2
    0.05 2.845×10-8 4.076 9
    0.025 1.686×10-9 3.814 8
    0.012 5 1.198×10-10 /
    下载: 导出CSV
  • [1] NOVICK-COHEN C A. On the Viscous Cahn-Hilliard Equation, in Material Instabilities in Continuum and Related Mathematical Problems[M]. Oxford:Oxford University Press, 1988.
    [2] doi: http://cn.bing.com/academic/profile?id=a5b155090a0c90fcad59419e23aa3e5a&encoded=0&v=paper_preview&mkt=zh-cn CAHN J W, HILLIARD J E. Free Energy of a Nonuniform System. Ⅰ. Interfacial Free Energy[J]. J Chem Phys, 1958, 28(2):258-267.
    [3] doi: https://www.researchgate.net/publication/258288826_The_viscous_Cahn-Hilliard_equation_I_Computations BAI F, ELLIOTT C M, GARDINER A, et al. The Viscous Cahn-Hilliard Equation. Ⅰ. Computations[J]. Nonlinearity, 1995, 8(2):131-160.
    [4] doi: https://www.researchgate.net/publication/2469568_Metastable_Internal_Layer_Dynamics_For_The_Viscous_Cahn-Hilliard_Equation REYNA L G, WARD M J. Metastable Internal Layer Dynamics for the Viscous Cahn-Hilliard Equation[J]. Methods Appl Anal, 1995, 2(3):285-306.
    [5] ELLIOTT C M, STUART A M. Viscous Cahn-Hilliard Equation Ⅱ. Analysis[J]. J Differential Equations, 1996, 128(2):387-414. doi: 10.1006/jdeq.1996.0101
    [6] GRINFELD M, NOVICK-COHEN A. The Viscous Cahn-Hilliard Equation:Morse Decomposition and Structure of the Global Attractor[J]. Trans Amer Math Sci, 1999, 351(6):2375-2406. doi: 10.1090/S0002-9947-99-02445-9
    [7] LI Ying-hua, YIN Jing-xue. The Viscous Cahn-Hilliard Equation with Periodic Potentials and Sources[J]. J Fixed Point Theory Appl, 2011, 9(1):63-84. doi: 10.1007/s11784-010-0014-z
    [8] ZHAO Xiao-peng, LIU Chang-chun. Optimal Control Problem for Viscous Cahn-Hilliard Equation[J]. Nonlinear Anal Theory Methods Appl, 2011, 74(17):6348-6357. doi: 10.1016/j.na.2011.06.015
    [9] THANH B L T, SMARRAZZO F, TESEI A. Passage to the Limit Over Small Parameters in the Viscous Cahn-Hilliard Equation[J]. J Math Anal Appl, 2014, 420(2):1265-1300. doi: 10.1016/j.jmaa.2014.06.036
    [10] COLLI P, FARSHBAF-SHAKER M H, GILARDI G, et al. Optimal Boundary Control of a Viscous Cahn-Hilliard System with Dynamic Boundary Condition and Double Obstacle Potentials[J]. SIAM J Control Optim, 2015, 53(4):2696-2721. doi: 10.1137/140984749
    [11] COLLI P, GILARDI G, PODIO-GUIDUGLI P, et al. Well-Posedness and Long-Time Behavior for a Nonstandard Viscous Cahn-Hilliard System[J]. SIAM J Appl Math, 2011, 71(6):1849-1870. doi: 10.1137/110828526
    [12] 姜金平, 董超雨.粘性Cahn-Hilliard方程在H1中的弱解存在性[J].贵州大学学报(自然科学版), 2015, 32(6):1-3. doi: http://d.old.wanfangdata.com.cn/Periodical/gzdxxb201506001
    [13] LE T T B, DAO A N, DIAZ J I. Critical Case for the Viscous Cahn-Hilliard Equation[J]. Electron J Differential Equations, 2017(176):1-8.
    [14] LI Juan, SUN Zhi-zhong, ZHAO Xuan. A Three Level Linearized Compact Difference Scheme for the Cahn-Hilliard Equation[J]. Sci China Math, 2012, 55(4):805-826. doi: 10.1007/s11425-011-4290-x
    [15] 王秋亮. Cahn-Hilliard方程的各向异性非协调有限元的误差估计[J].西南大学学报(自然科学版), 2012, 34(10):113-117. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=z20121022&flag=1
    [16] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000279898 MOHYUD-DIN S T, YILDRIM A, SARAYDN S. Approximate Series Solutions of the Viscous Cahn-Hilliard Equation via the Homotopy Perturbation Method[J]. World Appl Sci J, 2010, 11(7):813-818.
    [17] CHOO S M, CHUNG S K, LEE Y J. A Conservative Difference Scheme for the Viscous Cahn-Hilliard Equation with a Nonconstant Gradient Energy Coefficient[J]. Appl Numer Math, 2004, 51(2-3):207-219. doi: 10.1016/j.apnum.2004.02.006
    [18] CHOO S M, KIM Y H. Finite Element Scheme for the Viscous Cahn-Hilliard Equation with a Nonconstant Gradient Energy Coefficient[J]. J Appl Math Computing, 2005, 19(1-2):385-395. doi: 10.1007/BF02935813
    [19] MOMANI S, ERTURK V S. A Numerical Scheme for the Solution of Viscous Cahn-Hilliard Equation[J]. Numer Methods Partial Differ Equ, 2008, 24(2):663-669. doi: 10.1002/num.20286
    [20] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=debc7f01c38f1909ae1abfac6f2eee89 SHIN J, CHOI Y, KIM J. An Unconditional Stable Numerical Method for the Viscous Cahn-Hilliard Equation[J]. Discrete Contin Dyn Syst Ser B, 2014, 19(6):1737-1747.
    [21] CHOO S M, CHUNG S K. A Conservative Nonlinear Difference Scheme for the Viscous Cahn-Hilliard Equation[J]. J Appl Math Computing, 2004, 16(1-2):53-68. doi: 10.1007/BF02936150
    [22] 李娟.粘性Cahn-Hilliard方程的半线性Crank-Nicolson格式[J].四川师范大学学报(自然科学版), 2018, 41(2):237-245. doi: 10.3969/j.issn.1001-8395.2018.02.014
    [23] 李娟.对流Cahn-Hilliard方程的高精度有限差分方法[J].云南大学学报(自然科学版), 2017, 39(4):513-522. doi: http://d.old.wanfangdata.com.cn/Periodical/yndxxb201704001
    [24] 孙志忠.偏微分方程数值解法[M].北京:科学出版社, 2012.
    [25] 李娟, 高广花.二维扩展Fisher-Kolmogorov方程的线性化紧差分格式的最大模误差分析[J].西南师范大学学报(自然科学版), 2017, 42(3):12-21. doi: http://d.old.wanfangdata.com.cn/Periodical/xnsfdxxb201703003
  • 加载中
表( 2)
计量
  • 文章访问数:  763
  • HTML全文浏览数:  726
  • PDF下载数:  65
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-11-28
  • 刊出日期:  2020-01-20

粘性Cahn-Hilliard方程的高精度线性化差分方法

    作者简介: 李娟(1983-), 女, 副教授, 主要从事偏微分方程数值解研究
  • 南京审计大学金审学院 基础教学部, 南京 210023
基金项目:  国家自然科学基金面上项目(11671081);江苏省高校自然科学研究面上项目(16KJD110002);江苏省高等教育教学改革项目(2017JSJG541)

摘要: 讨论粘性Cahn-Hilliard方程的高精度线性化差分方法.利用降阶法对粘性Cahn-Hilliard方程建立三层线性化紧差分格式.用离散能量分析法证明差分格式的唯一可解性及在L-范数下的收敛性,其收敛阶为时间方向二阶、空间方向四阶.最后,通过数值算例验证了差分格式的理论结果.

English Abstract

  • 考虑如下粘性Cahn-Hilliard方程的初边值问题:

    其中:粘性系数α > 0,界面能量参数β > 0,内部化学势φ(u)=u3-u,初值u0(x)满足u(0,t)=u(Lt)=uxx(0,t)=uxx(Lt)=0.

    粘性Cahn-Hilliard方程是在玻璃和聚合物两相分离的过程中将分子间的摩擦力考虑进来而提出的数学模型[1].文献[2]指出文献[1]忽略了反映粘性影响的粘性项αuxxt,从而提出粘性Cahn-Hilliard方程,此后涌现了对粘性Cahn-Hilliard方程的大量理论研究[3-13].

    相对于标准Cahn-Hilliard方程的数值方法研究成果(见文献[14-15]及其参考文献),关于粘性Cahn-Hilliard方程的数值研究相对较少[16-22].目前关于粘性Cahn-Hilliard方程的差分方法研究,数值精度仅到时间和空间方向二阶收敛,而对于标准Cahn-Hilliard方程[14]和对流Cahn-Hilliard方程[23]的差分方法数值精度的研究已达到空间方向四阶收敛,故本文将对该方程建立时间方向二阶、空间方向四阶收敛的线性化紧差分格式,并证明差分格式在L范数下的无条件收敛性.

  • 考虑时间区间[0,T],取正整数MN. xi=ihtn=Ωh={xi|0≤iM},Ωτ={tn|0≤nN},Ωhτ=Ωh×Ωτ,其中$h = \frac{L}{M}, \;\tau = \frac{T}{N}$分别为空间和时间步长.设v={vin|0≤iM,0≤nN}是定义在Ωhτ上的网格函数.引入下面记号:

    Vh={v=(v0v1,…,vm),v0=vm=0}.对任意vVh,定义如下四阶差分算子

    和平均值算子

    对任意YηVh,引入如下内积

    下面利用降阶法对问题(1)-(3)建立紧差分格式.令v=-αut+βuxx-φ(u),可得

    在(xitn)处考虑方程(4)和(5),利用数值微分公式和泰勒公式,可得

    假设问题(1)-(3)有光滑解u(xt)∈Cxt8,3([0,L]×(0,T]),则存在正常数c1,使得

    下面考虑第一层值的计算.在方程(1)中,令t→0+,并记

    (11),(12)式为关于ψ(x)的二阶常微分方程边值问题,在xi处考虑方程(11),应用数值微分公式得

    其中:

    在(13)式中略去小量项ri,并用数值解ψi代替精确解gi,可得如下差分格式

    差分格式(15),(16)为关于ψ=(ψ0ψ1,…,ψM)的三对角线性方程组,可用追赶法求解.由常微分方程数值解理论[24]知,存在正常数c2,使得

    应用带积分型余项的泰勒公式可得

    其中

    由(17)式知,存在正常数c3,使得

    由初边值条件(6),(7)可得

    在(8),(9),(18),(20),(21)式中略去小量项,并用数值解{uinvin}代替精确解{UinVin},可得如下差分格式:

    用算子A作用(22)式,并将(23)式代入,可得如下紧差分格式:

    综上,可得求解问题(1)-(3)的数值算法如下:先利用(15),(16)式求得ψ,然后将ψ代入(27)式中第一式求得第一层数值解u1;当un-1un为已知时,(26)和(28)式为关于第n+1层数值解un+1的线性方程组,可通过解线性方程组求解un+1.

  • 本节利用能量分析方法讨论差分格式的唯一可解性和收敛性.方便起见,引入下面引理.

    引理1[24]  对任意uvVh,有(δxuv)=-(uδxv),|v|12$\frac{4}{{{h^2}}}$v2,‖v$\frac{{\sqrt L }}{2}$ |v|1成立.

    引理2[14]  对任意uvVh,有(Auv)=(uAv),(Avv)≥ $\frac{2}{3}$v2$\frac{5}{{12}}$v2≤‖Av2≤‖v2成立.

    应用引理1,根据内积和范数的定义易证下面等式成立.

    引理3  对任意vnVh,等式

    成立.

    定理1  差分格式(26)-(28)存在唯一解.

      由(27),(28)式知u0u1已唯一确定.现假设第n-1,n层的解un-1un已唯一确定.由(26),(28)式可得关于un+1的线性方程组,欲证其唯一可解性,需证明它对应的齐次方程组

    仅有零解.

    un+1与方程组(29)中的第一式作内积,并应用引理1和引理2,可得

    从而有

    un+1是唯一确定的.由归纳法原理知,差分格式是唯一可解的.定理证毕.

    下面证明差分格式的收敛性.记

    用(8),(9)式减去(22),(23)式,(18)式减去(24)中第一式,(20)式减去(24)中第二式,(21)式减去(25)式,可得如下误差方程:

    下面利用数学归纳法证明差分格式是收敛的.即有如下定理成立.

    定理2  差分格式(26)-(28)的解按L范数收敛于问题(1)-(3)的精确解,收敛阶为时间方向二阶、空间方向四阶.即存在不依赖于hτ的正常数c,使得下面估计式成立

    证由(32),(33)及(19)式知

    因而(34)式对n=0,1成立.

    假设(34)式对n=0,1,…,m(m≥1)均成立.由归纳假设,当τ2+h4$\frac{1}{c}$时,有

    其中

    并记

    再由微分中值定理,可得

    Aen与(30)式作内积,δx2en与(31)式作内积,可得

    根据引理1-3,由(38),(39)式,可得

    将(37)式代入(40)式,可得

    将(41)式乘以2τ,并记

    可得当τ$\frac{1}{{6{c_6}}}$时,有

    由离散的Gronwall不等式,可得

    其中

    根据引理1,由(42)式,结合En的定义,可得

    从而有

    即当n=m+1时,估计式(34)成立.由数学归纳法,定理结论成立.证毕.

  • 在问题(1)-(3)中,取L=1,时间T=1,初值u0(x)=sinπx.参数α=0.5,β=0.5.利用差分格式(26)-(28)计算问题(1)-(3)的数值解.

    记空间和时间步长为(hτ),数值解uin(hτ).注意到该问题无精确解,为验证数值收敛阶,定义最大模误差:

    对于固定的充分小的空间步长h,定义时间收敛阶:

    对于充分小的时间步长τ,定义空间收敛阶:

    具体计算结果见表 1表 2.从计算数据可以看出,差分格式的数值收敛阶为时间方向二阶和空间方向四阶收敛.

  • 对于粘性Cahn-Hilliard方程,其中含有时间空间混合偏导数,在建立线性化差分格式时,第一时间层的数值求解成为难点.先利用方程建立求解ut(xt0)的二阶数值格式,再对第一时间层采用显式格式离散,将ut(xt0)的数值解代入求解u1的显式格式,即可保证第一层数值解的时间二阶、空间四阶收敛性.对于其余时间层,利用降阶法建立了三层线性化隐式紧差分格式.利用能量分析法证明了差分格式在L范数下时间方向二阶、空间方向四阶收敛.最后通过数值算例验证了差分格式的有效性.这里,建立差分格式的方法可推广到高维粘性Cahn-Hilliard方程,但差分格式的收敛性分析将会是一个挑战,文献[14]和[25]讨论了二维高阶非线性发展方程的紧差分格式的收敛性,后续的工作将致力于二维粘性Cahn-Hilliard方程数值方法的研究.

参考文献 (25)

目录

/

返回文章
返回