-
考虑如下粘性Cahn-Hilliard方程的初边值问题:
其中:粘性系数α > 0,界面能量参数β > 0,内部化学势φ(u)=u3-u,初值u0(x)满足u(0,t)=u(L,t)=uxx(0,t)=uxx(L,t)=0.
粘性Cahn-Hilliard方程是在玻璃和聚合物两相分离的过程中将分子间的摩擦力考虑进来而提出的数学模型[1].文献[2]指出文献[1]忽略了反映粘性影响的粘性项αuxxt,从而提出粘性Cahn-Hilliard方程,此后涌现了对粘性Cahn-Hilliard方程的大量理论研究[3-13].
相对于标准Cahn-Hilliard方程的数值方法研究成果(见文献[14-15]及其参考文献),关于粘性Cahn-Hilliard方程的数值研究相对较少[16-22].目前关于粘性Cahn-Hilliard方程的差分方法研究,数值精度仅到时间和空间方向二阶收敛,而对于标准Cahn-Hilliard方程[14]和对流Cahn-Hilliard方程[23]的差分方法数值精度的研究已达到空间方向四阶收敛,故本文将对该方程建立时间方向二阶、空间方向四阶收敛的线性化紧差分格式,并证明差分格式在L∞范数下的无条件收敛性.
A High-Order Linear Difference Method for the Viscous Cahn-Hilliard Equation
-
摘要: 讨论粘性Cahn-Hilliard方程的高精度线性化差分方法.利用降阶法对粘性Cahn-Hilliard方程建立三层线性化紧差分格式.用离散能量分析法证明差分格式的唯一可解性及在L∞-范数下的收敛性,其收敛阶为时间方向二阶、空间方向四阶.最后,通过数值算例验证了差分格式的理论结果.
-
关键词:
- 粘性Cahn-Hilliard方程 /
- 紧差分格式 /
- 收敛性 /
- 非线性问题 /
- 线性化
Abstract: The article is devoted to discussing a high-order linear difference method for the viscous Cahn-Hilliard equation. A three-level linearized compact difference scheme is established for the viscous Cahn-Hilliard equation by the order reduction method. The unique solvability of the difference solution and its convergence in L∞-norm are proved with discrete energy analysis, the convergence order being two in time and four in space in the maximum norm. A numerical example is provided to demonstrate the theoretical results.-
Key words:
- viscous Cahn-Hilliard equation /
- compact difference scheme /
- convergence /
- nonlinear problem /
- linearization .
-
表 1 h=0.001时(26)-(28)式的最大模误差和时间收敛阶
τ H∞(h,τ) order1 0.05 3.141×10-4 1.863 6 0.025 8.632×10-5 1.961 6 0.012 5 2.216×10-5 2.020 5 0.006 25 5.462×10-6 / 表 2 τ=0.001时(26)-(28)式的最大模误差和空间收敛阶
h H∞(h,τ) order2 0.1 4.630×10-7 4.024 2 0.05 2.845×10-8 4.076 9 0.025 1.686×10-9 3.814 8 0.012 5 1.198×10-10 / -
[1] NOVICK-COHEN C A. On the Viscous Cahn-Hilliard Equation, in Material Instabilities in Continuum and Related Mathematical Problems[M]. Oxford:Oxford University Press, 1988. [2] doi: http://cn.bing.com/academic/profile?id=a5b155090a0c90fcad59419e23aa3e5a&encoded=0&v=paper_preview&mkt=zh-cn CAHN J W, HILLIARD J E. Free Energy of a Nonuniform System. Ⅰ. Interfacial Free Energy[J]. J Chem Phys, 1958, 28(2):258-267. [3] doi: https://www.researchgate.net/publication/258288826_The_viscous_Cahn-Hilliard_equation_I_Computations BAI F, ELLIOTT C M, GARDINER A, et al. The Viscous Cahn-Hilliard Equation. Ⅰ. Computations[J]. Nonlinearity, 1995, 8(2):131-160. [4] doi: https://www.researchgate.net/publication/2469568_Metastable_Internal_Layer_Dynamics_For_The_Viscous_Cahn-Hilliard_Equation REYNA L G, WARD M J. Metastable Internal Layer Dynamics for the Viscous Cahn-Hilliard Equation[J]. Methods Appl Anal, 1995, 2(3):285-306. [5] ELLIOTT C M, STUART A M. Viscous Cahn-Hilliard Equation Ⅱ. Analysis[J]. J Differential Equations, 1996, 128(2):387-414. doi: 10.1006/jdeq.1996.0101 [6] GRINFELD M, NOVICK-COHEN A. The Viscous Cahn-Hilliard Equation:Morse Decomposition and Structure of the Global Attractor[J]. Trans Amer Math Sci, 1999, 351(6):2375-2406. doi: 10.1090/S0002-9947-99-02445-9 [7] LI Ying-hua, YIN Jing-xue. The Viscous Cahn-Hilliard Equation with Periodic Potentials and Sources[J]. J Fixed Point Theory Appl, 2011, 9(1):63-84. doi: 10.1007/s11784-010-0014-z [8] ZHAO Xiao-peng, LIU Chang-chun. Optimal Control Problem for Viscous Cahn-Hilliard Equation[J]. Nonlinear Anal Theory Methods Appl, 2011, 74(17):6348-6357. doi: 10.1016/j.na.2011.06.015 [9] THANH B L T, SMARRAZZO F, TESEI A. Passage to the Limit Over Small Parameters in the Viscous Cahn-Hilliard Equation[J]. J Math Anal Appl, 2014, 420(2):1265-1300. doi: 10.1016/j.jmaa.2014.06.036 [10] COLLI P, FARSHBAF-SHAKER M H, GILARDI G, et al. Optimal Boundary Control of a Viscous Cahn-Hilliard System with Dynamic Boundary Condition and Double Obstacle Potentials[J]. SIAM J Control Optim, 2015, 53(4):2696-2721. doi: 10.1137/140984749 [11] COLLI P, GILARDI G, PODIO-GUIDUGLI P, et al. Well-Posedness and Long-Time Behavior for a Nonstandard Viscous Cahn-Hilliard System[J]. SIAM J Appl Math, 2011, 71(6):1849-1870. doi: 10.1137/110828526 [12] 姜金平, 董超雨.粘性Cahn-Hilliard方程在H1中的弱解存在性[J].贵州大学学报(自然科学版), 2015, 32(6):1-3. doi: http://d.old.wanfangdata.com.cn/Periodical/gzdxxb201506001 [13] LE T T B, DAO A N, DIAZ J I. Critical Case for the Viscous Cahn-Hilliard Equation[J]. Electron J Differential Equations, 2017(176):1-8. [14] LI Juan, SUN Zhi-zhong, ZHAO Xuan. A Three Level Linearized Compact Difference Scheme for the Cahn-Hilliard Equation[J]. Sci China Math, 2012, 55(4):805-826. doi: 10.1007/s11425-011-4290-x [15] 王秋亮. Cahn-Hilliard方程的各向异性非协调有限元的误差估计[J].西南大学学报(自然科学版), 2012, 34(10):113-117. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=z20121022&flag=1 [16] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000279898 MOHYUD-DIN S T, YILDRIM A, SARAYDN S. Approximate Series Solutions of the Viscous Cahn-Hilliard Equation via the Homotopy Perturbation Method[J]. World Appl Sci J, 2010, 11(7):813-818. [17] CHOO S M, CHUNG S K, LEE Y J. A Conservative Difference Scheme for the Viscous Cahn-Hilliard Equation with a Nonconstant Gradient Energy Coefficient[J]. Appl Numer Math, 2004, 51(2-3):207-219. doi: 10.1016/j.apnum.2004.02.006 [18] CHOO S M, KIM Y H. Finite Element Scheme for the Viscous Cahn-Hilliard Equation with a Nonconstant Gradient Energy Coefficient[J]. J Appl Math Computing, 2005, 19(1-2):385-395. doi: 10.1007/BF02935813 [19] MOMANI S, ERTURK V S. A Numerical Scheme for the Solution of Viscous Cahn-Hilliard Equation[J]. Numer Methods Partial Differ Equ, 2008, 24(2):663-669. doi: 10.1002/num.20286 [20] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=debc7f01c38f1909ae1abfac6f2eee89 SHIN J, CHOI Y, KIM J. An Unconditional Stable Numerical Method for the Viscous Cahn-Hilliard Equation[J]. Discrete Contin Dyn Syst Ser B, 2014, 19(6):1737-1747. [21] CHOO S M, CHUNG S K. A Conservative Nonlinear Difference Scheme for the Viscous Cahn-Hilliard Equation[J]. J Appl Math Computing, 2004, 16(1-2):53-68. doi: 10.1007/BF02936150 [22] 李娟.粘性Cahn-Hilliard方程的半线性Crank-Nicolson格式[J].四川师范大学学报(自然科学版), 2018, 41(2):237-245. doi: 10.3969/j.issn.1001-8395.2018.02.014 [23] 李娟.对流Cahn-Hilliard方程的高精度有限差分方法[J].云南大学学报(自然科学版), 2017, 39(4):513-522. doi: http://d.old.wanfangdata.com.cn/Periodical/yndxxb201704001 [24] 孙志忠.偏微分方程数值解法[M].北京:科学出版社, 2012. [25] 李娟, 高广花.二维扩展Fisher-Kolmogorov方程的线性化紧差分格式的最大模误差分析[J].西南师范大学学报(自然科学版), 2017, 42(3):12-21. doi: http://d.old.wanfangdata.com.cn/Periodical/xnsfdxxb201703003
计量
- 文章访问数: 763
- HTML全文浏览数: 726
- PDF下载数: 65
- 施引文献: 0