-
据世界卫生组织统计,至2017年底全球约有3 690万艾滋病毒携带者,同年有94万人死于艾滋病毒相关病症,艾滋病毒的传播仍是一项属于全球主要公共卫生问题[1].艾滋病毒(HIV)主要攻击人体免疫系统从而导致免疫功能的丧失,其中CD4+T细胞是重点攻击对象.美国食品和药物管理局已认定20多种抗HIV药物,这些药物主要分为两类,逆转录酶抑制剂(RTIs)和蛋白酶抑制剂(PIs)[2].如今,抗逆转录病毒药物能够有效控制HIV感染者的病情,但未提高感染者自身免疫力,最终感染者可能由于自身免疫力较弱而死于其他类型疾病.近年来,HIV免疫治疗法的采用可有效增强HIV感染者的自身免疫力[2-3].
文献[3]首先提出一类考虑免疫治疗因素的CD4+T细胞和游离病毒相互作用的HIV进展模型,文献[4]再将抑制病毒输入的治疗因素引入该模型,得到如下模型
其中:T=T(t)表示t时刻血浆中CD4+T细胞的浓度,V=V(t)表示t时刻血浆中游离病毒的浓度,s1为CD4+T细胞的增殖率,
$\frac{{{s_2}V\left( t \right)}}{{{b_1} + V\left( t \right)}}$ 为游离病毒对CD4+T细胞增殖的抑制率,$\frac{{gV\left( t \right)}}{{{b_2} + V\left( t \right)}}$ 为血浆中来源于淋巴系统和CD4+T细胞的游离病毒输入率,μ1为CD4+T细胞的死亡率,k为游离病毒对CD4+T细胞的感染率,c为CD4+T细胞对游离病毒的杀伤率,u1表示细胞因子(白细胞介素Interleukin-2,简写为IL-2)激活CD4+T细胞的速率系数,u2表示抑制病毒的治疗策略.由于IL-2具有激活和分化T淋巴细胞以获得增殖的作用[3],因此在免疫治疗过程中,IL-2是通过皮下注射于HIV感染者体内,然后在体内激活、分化CD4+T细胞,促进其增殖.在文献[5]的免疫治疗模型中引入感染者体内免疫治疗药物IL-2浓度变化的微分方程
其中:I=I(t)表示t时刻血浆中免疫治疗药物IL-2的浓度,μI为免疫治疗药物IL-2的衰减率,VI(t)为t时刻皮下注射IL-2的速度.注意到游离病毒存在自然死亡这一客观事实,本文将在模型(1)和模型(2)的基础上,考虑如下模型
其中:a为免疫治疗药物IL-2对CD4+T细胞的激活率,μ2为游离病毒的自然死亡率,其余参数的生物学意义同模型(1)和(2).系统(3)中参数s1,s2,b1,b2,μ1,μ2,k,a,g,c,μI均为正数.
本文将以皮下注射IL-2的速度VI(t)为控制变量,以实现CD4+T细胞浓度较大而IL-2注射速度较小为目标,建立治疗HIV的最优控制模型,进而使IL-2治疗过程的控制更易于临床实现.本文主要分析IL-2最优注射速度的特征和确定治疗末端时间tf使所得最优系统解的唯一性成立.在文献[2, 4, 6-8]中,考虑最优系统解的唯一性均需要治疗末端时间tf充分小.本文将给出保证最优系统解的唯一性时治疗末端时间tf的估计式.利用数值模拟,说明在最优控制下加入IL-2的免疫治疗能够有效增加HIV感染者血浆中的CD4+T细胞浓度且减少游离病毒浓度.
Optimal Control of an HIV Infection Model with Immunotherapy
-
摘要: 对一类具有IL-2免疫治疗的HIV感染模型的最优控制问题进行了讨论.该模型描述了血浆中CD4+T细胞、游离病毒和免疫治疗药物IL-2浓度之间的关系.通过以IL-2的注射速度为控制变量,以CD4+T细胞浓度尽可能大而IL-2注射速度尽可能小为目标函数,得到了最优注射速度的表达式和相应的最优系统,并且证明了当治疗末端时间充分小时最优系统的解唯一,同时给出末端时间充分小的估计式.最后利用四阶龙格库塔算法对所求最优控制下的治疗效果进行了数值模拟.Abstract: In this paper, the optimal control model of an HIV infection model with immunotherapy of IL-2 is considered. The model describes the interaction between uninfected CD4+T cells, the free virus and IL-2 in the plasma. By using the injection rate of IL-2 as the control variable, the uninfected T cells concentration as large as possible and the injection rate of IL-2 as small as possible as the objective function, the expression of the optimal injection rate of IL-2 and its corresponding optimal system are obtained. The uniqueness of solution of the optimal system is proved as the treatment final time is small enough, and the corresponding formula estimating the final time is given. At last, the effect of the IL-2 therapy under the found optimum control strategy is simulated.
-
Key words:
- immunotherapy /
- HIV infection model /
- optimal control /
- uniqueness .
-
[1] WHO.艾滋病毒/艾滋病[EB/OL]. (2018-07-19)[2018-11-21]. http://www.who.int/zh/news-room/fact-sheets/detail/hiv-aids. [2] CHATTERJEE A N, ROY P K. Anti-Viral Drug Treatment Along with Immune Activator IL-2:A Control-Based Mathematical Approach for HIV Infection[J]. International Journal of Control, 2012, 85(2):220-237. doi: 10.1080/00207179.2011.643414 [3] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_3c9137254bfa33a9dc383fcf41b2747d KIRSCHNER D E, WEBB G F. Immunotherapy of HIV-1 Infection[J]. Journal of Biological Systems, 1998, 6(1):71-83. [4] JOSHI H R. Optimal Control of an HIV Immunology Model[J]. Optimal Control Application and Methods, 2002, 23(4):199-213. doi: 10.1002/oca.710 [5] PILLIS L G D, GU W, RADUNSKAYA A E. Mixed Immunotherapy and Chemotherapy of Tumors:Modeling, Applications and Biological Interpretations[J]. Journal of Theoretical Biology, 2006, 238(4):841-862. doi: 10.1016/j.jtbi.2005.06.037 [6] GAO D P, HUANG N J. Optimal Control Analysis of a Tuberculosis Model[J]. Applied Mathematical Modelling, 2018, 58:47-64. doi: 10.1016/j.apm.2017.12.027 [7] KHAJANCHI S, GHOSH D. The Combined Effects of Optimal Control in Cancer Remission[J]. Applied Mathematics and Computation, 2015, 271:375-388. doi: 10.1016/j.amc.2015.09.012 [8] ZHOU Y G, LIANG Y T, WU J H. An Optimal Strategy for HIV Multitherapy[J]. Journal of Computational and Applied Mathematics, 2014, 263:326-337. doi: 10.1016/j.cam.2013.12.007 [9] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_7e7790f05b6a7d810ec5bb5f71f5e317 FISTER K R, LENHART S, MCNALLY J S. Optimizing Chemotherapy in an HIV Model[J]. Electronic Journal of Differential Equations, 1998, 32:1-12. [10] doi: http://cn.bing.com/academic/profile?id=2e8c578543f3bc0b97eb71879c14fc4d&encoded=0&v=paper_preview&mkt=zh-cn PILLIS L G D, GU W, FISTER K R, et al. Chemotherapy for Tumors:An Analysis of the dynamics and a Study of Quadratic and Linear Optimal Controls[J]. Mathematical Biosciences, 2007, 209(1):293-315. [11] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4e574af900bd131be3913e0933a49e5a HATTAF K, YOUSFI N. Two Optimal Treatments of HIV Infection Model[J]. World Journal of Modelling and Simulation, 2012, 8(1):27-35. [12] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_3604f234af607eb10bfab0704cceca02 GARIRA W, MUSEKWA S D, SHIRI T. Optimal Control of Combined Therapy in a Single Strain HIV-1 Model[J]. Electronic Journal of Differential Equations, 2005, 52:357-370. [13] 廖书, 杨炜明.一类含有预防接种的SVIR最优控制模型[J].西南大学学报(自然学科版), 2015, 37(1):72-78. doi: http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201501011 [14] FLEMING W H, RISHEL R W. Deterministic and Stochastic Optimal Control[M]. New York:Springer Verlag, 1975:60-65. [15] KOT M. Elements of Mathematical Ecology[M]. Cambridge:Cambridge University Press, 2001:239-243.