-
双通路连续中继(two-path successive relaying,TPSR)网络[1]以钻石中继(diamond relaying)结构为基础,两个中继节点轮流接收和转发源节点发射符号,目的节点在每个时隙能接收并解码来自源节点的发射符号,频谱效率高[2].如果中继节点采用全双工(full-duplex,FD)通信还能简化状态控制[3].但在全双工TPSR(FD-TPSR)网络中,一方面,全双工中继存在残留自干扰(residual self-interference,RSI),会导致中继节点和目的节点的信干噪比下降.另一方面,发射中继会对接收中继形成中继间干扰(inter-relay interference,IRI).在基于放大转发(amplify-and-forward,AF)的FD-TPSR网络中,虽然目的节点可以根据历史信息消除IRI,但会降低信干噪比[4-5];而在采用译码转发(decode-and-forward,DF)的FD-TPSR网络中,中继节点利用连续干扰消除(successive interference cancellation,SIC)首先解码IRI并从接收信号中剔除,然后转发无IRI的信号至目的节点[6],但如果中继之间的信道质量差,IRI解码差错会向目的节点传播[7].文献[8]针对解调转发(demodulate-and-forward,DmF)TPSR网络提出一种混合策略,依据中继间信道质量,在差分解调和直接解调间切换.文献[9]将多天线和波束赋形应用于TPSR网络,设计了一种基于信噪比的中继选择协议,分析了分布式空时编码传输方案的性能.文献[10]针对多天线双向中继网络提出一种中继方案和用户组选择方案,同时优化中继预编码器和接收检测器,以降低中继间干扰和接收端自干扰.信号检测主要关注可靠性和实时性,基于极大似然(maximum likelihood,ML)准则的信号检测是最优检测[11],但处理复杂度高.文献[12]采用最小均方误差-判决反馈均衡器执行信号检测,能获得满分集增益,但若排序出错,判决反馈均衡器在执行SIC时会造成差错传播,导致性能恶化.此外,采用逐符号判决反馈,目的节点必须完成所有源节点信号接收后才能处理,难以满足端到端时延要求.
本文针对全双工双通路连续中继网络,提出一种IRI处理方法,中继节点消除部分IRI,以提高端到端信干噪比;保留部分IRI,在目的节点构成延迟转发编码结构,以提供时间分集.提出一种基于并行软干扰消除的匹配滤波(MF-PSIC)算法,匹配滤波器结构简单,实现复杂度低,基于软输出的并行干扰消除能并行检测所有时隙的符号,处理时延小,且具有与ML检测算法相近的性能.
An IRI Processing and Signal Detection Algorithm for Full-Duplex Two-Path Successive Relay Networks
-
摘要: 全双工双通路连续中继(FD-TPSR)网络频谱效率高,状态控制简单,但全双工中继存在残留自干扰(RSI),发射中继对接收中继也会形成中继间干扰(IRI),会导致通信性能下降.这里提出一种中继间干扰处理方法,中继节点消除部分IRI,以提高端到端信干噪比;保留部分IRI,在目的节点构成延迟转发编码结构,以提供分集增益.同时提出一种基于并行软干扰消除的匹配滤波(MF-PSIC)信号检测算法,匹配滤波器结构简单,实现复杂度低,基于软输出的并行干扰消除能同时检测所有时隙的符号,处理时延小.仿真结果表明,中继间干扰处理方法兼顾了分集增益和累积干扰与噪声因素,相比于无IRI消除和完全IRI消除,误比特率最低;MF-PSIC信号检测算法实现复杂度低,相比于ML信号检测算法仅有很少的性能损失.Abstract: Full-duplex two-path successive relay (FD-TPSR) networks have high spectral efficiency and simple state control. However, there is residual self-interference (RSI) in full duplex relay, and there will also be inter-relay interference (IRI) between transmitting relay and receiving relay, which will lead to the degradation of communication performance. In this paper, an IRI processing method is proposed, in which the relay nodes eliminate partial IRI to improve the end-to-end signal-to-interference-to-noise ratio (SINR) and reserve partial IRI to form a delayed forwarding coding structure at the destination node to provide time diversity gain. A matched-filter with parallel soft interference cancellation (MF-PSIC) algorithm is proposed, in which the structure of the matched filter is simple and the implementation complexity is low, and the parallel interference cancellation based on soft output can simultaneously detect all time slot symbols in parallel, and the processing delay is small. The simulation results show that the proposed IRI processing method takes into account diversity gain, cumulative interference and noise effects and, compared with non-IRI cancellation and full IRI cancellation, its bit error rate is the lowest. The implementation complexity of MF-PSIC detection algorithm is low, and there is little performance loss compared with ML detection algorithm.
-
Key words:
- relay network /
- two-path successive relay network /
- full-duplex /
- inter-relay interference /
- signal detection .
-
[1] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cs%2f0703078 OECHTERING T J, SCHNURR C, BJELAKOVIC I, et al. Broadcast Capacity Region of Two-Phase Bidirectional Relaying[J]. IEEE Transactions on Information Theory, 2008, 54(1):454-458. [2] LIAU Q Y, LEOW C Y. Study of Relay Position in Two-Path Successive Relaying with Interference Cancellation[C]//IEEE Asia Pacific Conference on Wireless and Mobile Autust 28-30, 2014. Bali, Indonesia, New York, USA: IEEE, 2014. [3] doi: http://qe3gw7ge4p.search.serialssolutions.com/?ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info:sid/xueshu.baidu.com&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Band%20Full-Duplex%20Relaying%3A%20A%20Survey%2C%20Research%20Issues%20and%20Challenges&rft.jtitle=IEEE%20Communications%20Surveys%20and%20Tutorials LIU G, YU F R, JI H, et al. In-Band Full-duplex Relaying:A Survey, Research Issues and Challenges[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2):500-524. [4] ZHANG R. On Achievable Rates of Two-Path Successive Relaying[J]. IEEE Transactions on Communications, 2009, 57(10):2914-2917. doi: 10.1109/TCOMM.2009.10.080113 [5] doi: https://ieeexplore.ieee.org/document/8207596/ DOU G Q, DENG R, HE X W, et al. Precoding-Based Inter-Relay Interference Cancelation for Amplify- and-Forward Two-Path Successive Relay Networks[J]. IEEE Signal Processing Letters, 2018, 25(2):229-233. [6] LUO C B, GONG Y, ZHANG F C. Full Interference Cancellation for Two-Path Relay Cooperative Networks[J]. IEEE Transactions on Vehicular Technology, 2011, 60(1):343-347. doi: 10.1109/TVT.2010.2090676 [7] TIAN F, ZHANG W, MA W K, et al. An Effective Distributed Space-Time Code for Two-Path Successive Relay Network[J]. IEEE Transactions on Communications, 2011, 59(8):2254-2263. doi: 10.1109/TCOMM.2011.060911.100686 [8] GONG Y, LUO C B, CHEN Z. Two-Path Successive Relaying With Hybrid Demodulate and Forward[J]. IEEE Transactions on Vehicular Technology, 2012, 61(5):2044-2053. doi: 10.1109/TVT.2012.2191807 [9] GILAN M S, OLFAT A. On the Performance of Distributed Space-time Coding with Selection Relaying and Beamforming for Two-Path Successive Relay Network[C]//2017 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), June 5-8, 2017. Istanbul. New York, USA: IEEE, 2017. IEEE Press, 2017: 1-5. [10] 陈绍东.基于二次约束及用户组选择的双向中继网络[J].西南师范大学学报(自然科学版), 2018, 43(1):25-30. doi: http://d.old.wanfangdata.com.cn/Periodical/xnsfdxxb201801004 [11] YOON E. Maximum Likelihood Detection with a Closed-Form Solution for the Square QAM Constellation[J]. IEEE Communications Letters, 2017, 21(4):829-832. doi: 10.1109/LCOMM.2016.2642924 [12] LIU Y, XIA X G, ZHANG H L. Distributed Linear Convolutional Space-time Coding for Two-relay Full-duplex Asynchronous Cooperative Networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(12):6406-6417. doi: 10.1109/TWC.2013.102313.130541 [13] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_b6c56430cbcfd4ca0fa299adfe16c462 ZHANG M X, AHMED S, KIM S. Iterative MMSE-based Soft MIMO Detection with Parallel Interference Cancellation[J]. IET communications, 2017, 11(11):1775-1781. [14] JI Y C, HAN C C, WANG A G, et al. Partial Inter-relay Interference Cancellation in Two-Path Successive Relay Network[J]. IEEE Communications Letters, 2014, 18(3):451-454. doi: 10.1109/LCOMM.2014.011714.140016