-
粮食安全是当今世界面临的主要全球挑战之一,粮食在储存期间的霉变占据了粮食损耗的主要部分[1].将水分降低至一定范围可有效缩减粮食在储存期间的霉变.其中,干燥是实际生产中降低粮食水分的最常用手段[2].
干燥是通过热能除去湿物料中水分的过程[3],其本质上是一种传热、传质耦合的现象[4],即物料在吸收热量的同时将水分以蒸汽的形式释放到外环境.随着市场的需求与科技的迅猛发展,大量的干燥方法涌现而出,如真空冷冻干燥、红外干燥、喷雾干燥等,近几年很多研究者将一种或多种干燥的方法并用,提出了联合干燥法的思想,然而粮食作物的干燥则更多依赖于热风干燥技术[5-6].
热风干燥有操作简单、成本低、对环境和场地设备要求不高等特点[7].为了进一步优化热风干燥的工艺,工程师们往往希望得到干燥过程中干燥设备内的温度、热风流速、湿度等物理量,但从实验中测量这些物理量是不经济的,甚至存在极大的困难.其中,温度与湿度属于标量物理量,测试相对简单,但是如果要得到温度场与湿度场的分布情况,则需要选取大量样本点进行测试,且样本点的数量将会随精度的要求呈指数式增长,这会导致实验成本与实验难度急剧增加;对于速度等矢量物理量,其本身测量就存在一定困难,而一定流域内速度场的测量则更加困难,甚至无法测量.因此,建立热风干燥过程的数学模型并通过计算机求解模型,获取所需要的物理量并观察干燥的物理过程,以优化热风干燥工艺是极其有必要的[8-11].
在过去的几年里,大量学者对热风干燥过程进行了研究,其研究结果大致可归为动力学模型研究与多物理场数学模型研究.动力学模型研究的主要内容一般是针对某种特定物料,在不同操作条件下直接进行实验,将实验结果按照Page模型、Logarithmic模型、Thomson模型等动力学模型进行拟合,并通过一定的分析手段得到该物料的最佳干燥条件或最佳干燥动力学模型.贾敏、齐娅汝、孙悦等分别研究了鲍鱼、二至丸、紫薯的干燥过程,得到了其最佳动力学模型,或最佳干燥条件[12-14].该类研究具有较强的针对性,在确定特定物料干燥条件时有一定优势,但是其拓延性较差,对于不同物料需要重新进行实验.多物理场数学模型研究的主要内容是针对物理模型,经过一系列抽象与假设后,直接用数学方程来描述物理过程,最后通过计算机软件求解数学模型以获取物料在干燥过程中的各项物理参数,具有较好一般性与优良延拓性.李艳等建立了仓内稻谷热风干燥的多尺度多层结构的热质传递模型,并较好地预测了稻谷的干燥过程,但其将温度边界条件直接设置为热风温度,只考虑了稻谷内部的热质传递,忽略了干燥仓内的传热传质过程[15];陈磊等以海绵为材料对多孔介质干燥过程进行了模拟,但其只考虑了海绵内部湿热传递情况,忽略了海绵外部环境的传热传质过程[16];刘洋等将马铃薯块视为多孔介质,建立其对流干燥的多场耦合模型,使用COMSOL软件对模型进行了求解,得到了干燥过程中温度、含湿量、水分质量等参数,但是该模型是以马铃薯为研究对象,并未考虑马铃薯外部环境中物理量的变化情况[17];王会林等基于菲克扩散定律、傅立叶导热定律和热弹性理论构建了含湿多孔介质中热—湿—力双向耦合的多场模型,并将模型应用于马铃薯块与胡萝卜块,同时分析了环境因素对干燥过程的影响,但是并未考虑物料外环境中的物理过程[18];Onwude等建立了红薯的热风红外联合干燥模型,较好地预测了红薯的干燥过程,但其直接以热流量为边界条件,忽略了干燥室内的传热传质过程[1];此外Salagnac、Jaturonglumlert、Datta、Kumar等人针对不同干燥方法建立了多种多场耦合模型并将模型应用于不同的物料,证实了模型的可行性,Kumar还考虑了物料干燥过程的收缩,对以往的模型进行了进一步的拓展[19-22].不难看出,国内外学者在物料干燥的多场耦合模型上已经取得了丰厚的成果,但是已有模型大都是针对被干燥物料而建立的,极少考虑到物料外部环境中热质传递情况.
基于上述情况,本文引入流体动力学方程组描述物料外部区域热风流场变化规律;对物料外部区域应用热力学第一定律,建立了其能量传递控制方程,通过密度、黏度两个物理量建立了流体动力学方程组与热传递方程之间的耦合关系,通过达西渗流定理和菲克扩散定理将物料外部与内部的物理方程联系起来.综上所述,本文在前人的基础上进一步完善了热风干燥模型,使得模型能够更加贴切地描述实际干燥过程,模型计算结果对干燥设备的设计优化有指导作用.
A Multiphysics Coupling-Based Mathematical Model of Hot-Air Drying and Its Verification
-
摘要: 热风干燥是多物理场耦合的过程,存在热风外环境和物料内部湿热迁移共同作用.在质量和能量守恒定律的基础上应用达西定律、菲克定律、傅里叶导热定律,分别构建了热风干燥过程中物料外部与内部的流场、温度场、质量场的控制方程及模型,描述了热风干燥过程中整个干燥室内的湿热传递规律.针对油菜籽热风干燥过程,基于COMSOL Multiphysics对干燥模型进行求解并进行了油菜籽热风干燥实验,以验证模型的有效性.结果表明:物料干基含水率的模型求解结果与真实实验结果最大相对误差为13.3%;在干燥过程中物料存在干区、湿区、蒸发区之分,干区与湿区被蒸发区分开,且蒸发区逐渐由物料外部向物料内部迁移;干燥过程中干燥室内水蒸气浓度先增大后减小,且干燥室中心区域水蒸气浓度比干燥室边缘区域高;物料平均温度在干燥初期迅速上升,中期上升速度逐渐减小,后期趋于平稳且接近热风温度;干燥室边缘区域风速比中心区域风速大,热风流场在极短的时间内达到稳态,其中心区域风速接近为0.Abstract: The mildew of grain during storage constitutes a major part of grain loss. The industry usually reduces the moisture content of the grain by drying, which reduces the loss caused by mildew. Among many drying methods, hot air drying has long occupied a large market share due to its advantages of simple operation, low cost, and low equipment requirements. Therefore, it is extremely necessary to optimize the hot air drying machines. During the optimization process, engineers often try to understand the distribution of physical fields such as temperature, wind speed and humidity in the drying machines. However, it is uneconomical to directly measure these physical fields from the drying machines, and there are great difficulties to measure them. Thus, based on the previous studies, this paper considers the influence of heat and mass transfer in the hot air drying process, and incorporates the fluid dynamics equations into the model framework, considering conservations of mass, energy and momentum. An analysis is carried out to establish mathematical equations based on the conservations, which fully describes the entire hot air drying process. In the text, four parts are used to introduce the whole mathematical model. (1) The hot air flow field adopts the fluid dynamics equation as the governing equation, which describes the transfer law of air outside and inside the material. (2) The temperature field is based on the law of conservation of energy, ignoring some minor thermal phenomena, and a heat exchange governing equation is constructed. (3) The gas phase transfer model of the moisture is based on the law of conservation of mass, and the phase change factor of moisture is introduced into the governing equation by means of source term. (4) The liquid phase transfer model of moisture is also based on the law of conservation of mass, whose governing equations have different signs on the source term than the gas phase transfer model. An experiment with rapeseed was carried out to verify the numerical simulation results of the model. The results showed that the maximum relative error between the model numerical simulation results and the real experimental results was 13. 3%, which indicated that the model could satisfactorily describe the hot air drying process. In addition, the numerical simulation results showed that a dry zone, a wet zone and an evaporation zone existed in the drying material during the drying process, the dry zone and the wet zone were separated by the evaporation zone, and the evaporation zone gradually migrated from the outside to the inside of the material. During the drying process, the concentration of water vapor in the drying chamber first increased and then decreased, and the concentration of water vapor was higher in the central area of the drying chamber than in the edge of the drying chamber. The average temperature of the material rose rapidly at the beginning of the experiment, and tended to be stable in the middle and late periods, which indicated that the material had a preheating time during the drying process, and the hot air temperature could be appropriately reduced in the middle and late drying period to reduce the energy consumption. The hot air flow field in the dry chamber reached a steady state in a very short time, which indicated that the steady solution of the hot air flow field could be directly used to calculate heat and mass transfer, for purpose of simulation cost saving.
-
Key words:
- hot air drying /
- heat and mass transfer /
- multiphysics coupling /
- porous medium .
-
表 1 数值求解的参数设置
参数 数值 固体骨架 密度/(kg·m-3) 1 100 导热系数/(W·m-1·K-1) 0.21 比热/(J· kg-1·K-1) 1 650 孔隙率 0.376 9 空气 密度/(kg·m-3) 1.205 导热系数/(W·m-1·K-1) 0.025 比热/(J· kg-1·K-1) 1.006×103 黏度/(kg· m-1·s-1) 1.81×105 扩散系数/(m2·s-1) 2.6×10-5 液态水 密度/(kg·m-3) 998.2 导热系数/(W·m-1·K-1) 0.59 比热/(J· kg-1·K-1) 4.182×103 黏度/(kg· m-1·s-1) 1.002×10-3 扩散系数/(m2·s-1) 1×10-14 蒸发潜热/(J·kg-1) 2.454×106 蒸发速率/s-1 1 000 初始饱和度 0.326 5 初始浓度/(mol·m-3) 6 823.5 水蒸气 导热系数/(W·m-1·K-1) 0.026 比热/(J· kg-1·K-1) 2.026×103 黏度/(kg· m-1·s-1) 1.8×10-5 扩散系数/(m2·s-1) 2.2×10-5 初始浓度/(mol·m-3) 0 环境参数 热风温度/K 328.15 进口风速/(m·s-1) 0.9 环境温度/K 300.15 环境压力/Pa 1.013×105 -
[1] ONWUDE D I, HASHIM N, ABDAN K, et al. Modelling of Coupled Heat and Mass Transfer for Combined Infrared and Hot-Air Drying of Sweet Potato[J]. Journal of Food Engineering, 2018, 228:12-24. doi: 10.1016/j.jfoodeng.2018.02.006 [2] doi: http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S1043-4526(06)52001-7/ BOVELLBENJAMIN A C. Sweet Potato:A Review of Its Past, Present, and Future Role in Human Nutrition[J]. Advances in Food and Nutrition Research, 2007, 52(6):1-59. [3] doi: http://www.sciencedirect.com/science/article/pii/S1364032113008010 PIRASTEH G, SAIDUR R, RAHMAN S M A, et al. A Review on Development of Solar Drying Applications[J]. Renewable & Sustainable Energy Reviews, 2014, 31(2):133-148. [4] 潘永康, 王喜忠, 刘相东.现代干燥技术[M].北京:化学工业出版社, 2007. [5] 任广跃, 张忠杰, 朱文学, 等.粮食干燥技术的应用及发展趋势[J].中国粮油学报, 2011, 26(2):124-128. doi: http://d.old.wanfangdata.com.cn/Periodical/zglyxb201102028 [6] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ca2f8b1cd83e859b8abb5f56eac4cb89 ONWUDE D I, HASHIM N, CHEN G N. Recent Advances of Novel Thermal Combined Hot Air Drying of Agricultural Crops[J]. Trends in Food Science & Technology, 2016, 57:132-145. [7] 尹慧敏, 聂宇燕, 沈瑾, 等.基于Weibull分布函数的马铃薯丁薄层热风干燥特性[J].农业工程学报, 2016, 32(17):252-258. doi: 10.11975/j.issn.1002-6819.2016.17.033 [8] 任广跃, 张伟, 张乐道, 等.多孔介质常压冷冻干燥质热耦合传递数值模拟[J].农业机械学报, 2016, 47(3):214-220. doi: http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201603030 [9] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=516203ec6714034ee8e11a76cc933250 HENRÍQUEZ C, CÓRDOVA A, ALMONACID S, et al. Kinetic Modeling of Phenolic Compound Degradation During Drum-Drying of Apple Peel By-Products[J]. Journal of Food Engineering, 2014, 143(6):146-153. [10] doi: http://www.sciencedirect.com/science/article/pii/S0260877413004275 KUMAR C, KARIM M A, JOARDDER M U H. Intermittent Drying of Food Products:A Critical Review[J]. Journal of Food Engineering, 2014, 121(1):48-57. [11] doi: http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Comprehensive%20Reviews%20in%20Food%20Science%20and%20Food%20Safety&volume=15&issue=3&spage=599 ONWUDE D I, HASHIM N, JANIUS R B, et al. Modeling the Thin-Layer Drying of Fruits and Vegetables:A Review[J]. Comprehensive Reviews in Food Science & Food Safety, 2016, 15(3):599-618. [12] 贾敏, 丛海花, 薛长湖, 等.鲍鱼热风干燥动力学及干燥过程数学模拟[J].食品工业科技, 2012, 33(3):72-76, 80. doi: http://d.old.wanfangdata.com.cn/Periodical/spgykj201203027 [13] 齐娅汝, 李远辉, 韩丽, 等.二至丸热风干燥动力学及干燥过程数学模拟研究[J].中草药, 2017, 48(15):3056-3063. doi: http://d.old.wanfangdata.com.cn/Periodical/zcy201715007 [14] 孙悦, 刘云宏, 于慧春, 等.基于Weibull分布函数的超声强化热风干燥紫薯的干燥特性及过程模拟[J].食品科学, 2017, 38(7):129-135. doi: http://d.old.wanfangdata.com.cn/Periodical/spkx201707021 [15] 李艳, 徐英英, 袁月定, 等.仓内稻谷干燥的多尺度多层结构热质传递模拟及试验[J].农业工程学报, 2016, 32(2):258-265. doi: http://d.old.wanfangdata.com.cn/Periodical/nygcxb201602037 [16] 陈磊, 王树刚, 张腾飞, 等.大温差条件下多孔材料干燥过程数值模拟[J].大连理工大学学报, 2018, 58(3):221-228. doi: http://d.old.wanfangdata.com.cn/Periodical/dllgdxxb201803001 [17] 刘洋, 黄涛.基于生物多孔介质的对流干燥数值模拟[J].湖北工业大学学报, 2018, 33(4):113-116. doi: 10.3969/j.issn.1003-4684.2018.04.029 [18] 王会林, 卢涛, 姜培学.生物多孔介质热风干燥数学模型及数值模拟[J].农业工程学报, 2014, 30(20):325-333. doi: 10.3969/j.issn.1002-6819.2014.20.039 [19] SALAGNAC P, GLOUANNEC P, LECHARPENTIER D. Numerical Modeling of Heat and Mass Transfer in Porous Medium During Combined Hot Air, Infrared and Microwaves Drying[J]. International Journal of Heat and Mass Transfer, 2004, 47(19-20):4479-4489. doi: 10.1016/j.ijheatmasstransfer.2004.04.015 [20] JATURONGLUMLERT S, KIATSIRIROAT T. Heat and Mass Transfer in Combined Convective and Far-Infrared Drying of Fruit Leather[J]. Journal of Food Engineering, 2010, 100(2):254-260. doi: 10.1016/j.jfoodeng.2010.04.007 [21] doi: http://www.sciencedirect.com/science/article/pii/S0260877401000796 DATTA A K, NI H. Infrared and Hot-Air-Assisted Microwave Heating of Foods for Control of Surface Moisture[J]. Journal of Food Engineering, 2002, 51(4):355-364. [22] KUMAR C, JOARDDER M U H, FARRELL T W, et al. Multiphase Porous Media Model for Intermittent Microwave Convective Drying (IMCD) of Food[J]. International Journal of Thermal Sciences, 2016, 104:304-314. doi: 10.1016/j.ijthermalsci.2016.01.018 [23] 陶斌斌.多孔介质对流干燥传热传质机理的研究及其数值模拟[D].天津: 河北工业大学, 2004. http://cdmd.cnki.com.cn/Article/CDMD-10080-2004076557.htm [24] 刘相东, 杨彬彬.多孔介质干燥理论的回顾与展望[J].中国农业大学学报, 2005, 10(4):81-92. doi: 10.3321/j.issn:1007-4333.2005.04.016 [25] WHITAKER S. Simultaneous Heat, Mass, and Momentum Transfer in Porous Media: a Theory of Drying[M]//Advancts in Heat Transfer. Amsterdam: Elsevier, 1977. [26] DATTA A K. Porous Media Approaches to Studying Simultaneous Heat and Mass Transfer in Food Processes. I:Problem Formulations[J]. Journal of Food Engineering, 2007, 80(1):80-95. doi: 10.1016/j.jfoodeng.2006.05.013 [27] SMITS A J, DUSSAUGE J P. Turbulent Shear Layers in Supersonic Flow[M]. New York:Springer, 2006. [28] 刘伟, 范爱武, 黄晓明.多孔介质热传质理论与应用[M].北京:科学出版社, 2006. [29] HALDER A, DHALL A, DATTA A K. Modeling Transport in Porous Media with Phase Change:Applications to Food Processing[J]. Journal of Heat Transfer, 2011, 133(3):031010. doi: 10.1115/1.4002463 [30] HOPKINS P L, EATON R R, BIXLER N E. NORIA-SP: A Finite Element Computer Program for Analyzing Liquid Water Transport in Porous Media; Yucca Mountain Site Characterization Project[R]. Office of Scientific and Technical Information (OSTI), 1991. [31] 刘相东.干燥过程原理研究概况[J].干燥技术与设备, 2004, 3(3):3-4, 9. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200401741401 [32] 郭孟报.甘蓝型油菜籽热风干燥的流场特性及干燥箱优化[D].重庆: 西南大学, 2015. http://d.wanfangdata.com.cn/Thesis/Y2810928 [33] SOPONRONNARIT S, PONGTORNKULPANICH A, PRACHAYAWARAKORN S. Corn Quality After Drying by Fluidization Technique at High Temperature[J]. Drying Technology, 1997, 15(10):2577-2586. doi: 10.1080/07373939708917378 [34] DATTA A K. Porous Media Approaches to Studying Simultaneous Heat and Mass Transfer in Food Processes. II:Property Data and Representative Results[J]. Journal of Food Engineering, 2007, 80(1):96-110. doi: 10.1016/j.jfoodeng.2006.05.012 [35] 杨玲.甘蓝型油菜籽热风干燥传热传质特性及模型研究[D].重庆: 西南大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10635-1015547736.htm [36] METZGER T, KWAPINSKA M, PEGLOW M, et al. Modern Modelling Methods in Drying[J]. Transport in Porous Media, 2007, 66(1-2):103-120. doi: 10.1007/s11242-006-9025-z