-
近几年来,每次手足口病爆发,都会对国家和社会造成比较严重的影响,文献[1]对于非自治双菌株的传染病模型进行了研究和理论分析.近些年,许多学者对于各种类型的非线性感染率的传染病模型进行了广泛的研究[2-7].本文考虑对手足口病影响较大的3种病毒株,通过研究CA16,EV71以及其他病毒株的感染率并建立数学模型,达到对于手足口病的传播规律的深入认识.首先,假设模型参数S(t)表示t时刻的易感人群,Ii(t)(i=1,2,3)分别表示t时刻CA16,EV71病毒以及其他病毒感染手足口病的人群数,建立如下模型
其中:β1(t)是CA16病毒感染率,β2(t)是EV71病毒感染率,β3(t)是其他病毒感染率,ρ1是人群中感染CA16病毒康复率,ρ2是人群中感染EV71病毒康复率,ρ3是人群中感染其他病毒康复率,α是人群未感染病的自然出生率或自然死亡率并假设它们相等.
Dynamics Analysis of a Hand-Foot-Mouth Disease (HFMD) Model Infected by Three Kinds of Viruses
-
摘要: 建立了CA16病毒、EV71病毒及其他病毒株感染下周期性发病的手足口病模型.得到了模型的基本再生数并用它证明了模型无病平衡点的全局渐近稳定性.另外,分析了单一病毒株周期解的稳定性.最后,发现基本再生数最大的病毒株会持续生存下来,其他两种病毒株会被竞争排斥掉.Abstract: In a study reported in this paper, we established a hand-foot-mouth disease (HFMD) model with periodic onset of CA16 virus, EV71 virus and other viral strains. We obtained the basic reproduction number of the model and used it to prove the global asymptotic stability of the disease-free equilibrium point of the model. In addition, we also analyzed the stability of the periodic solution of a single virus strain. Finally, we found that the virus strain with the largest number of basic regeneration survived, and the other two strains died out by competition.
-
Key words:
- basic reproduction number /
- periodic solution /
- stability /
- competitive exclusion .
-
[1] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=709107c962a583c625371a29b9e9c922 THIEME H R. Uniform Persistence and Permanence for Non-Autonomous Semiflows in Population Biology[J]. Math Biosci, 2000, 166(2):173-201. [2] 姚苗然, 王稳地, 张金金, 等.结核分枝杆菌动力学模型的稳定性分析[J].西南大学学报(自然科学版), 2017, 39(5):113-119. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201705017&flag=1 [3] 闫超, 王稳地, 曾豪, 等.具有脉冲加药的双菌株模型的动力学分析[J].西南大学学报(自然科学版), 2016, 38(5):86-93. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201605015&flag=1 [4] 李艳, 王稳地, 周爱蓉, 等.具有隐性感染的登革热模型稳定性分析[J].西南师范大学学报(自然科学版), 2018, 43(5):1-5. doi: http://d.old.wanfangdata.com.cn/Periodical/xnsfdxxb201805001 [5] doi: http://d.old.wanfangdata.com.cn/Periodical/sxxb-e200401006 LISENA B. Global Stability in Periodic Competitive Systems[J]. Nonlinear Anal-Real, 2004, 5(4):613-627. [6] 马知恩, 周义仓, 王稳地, 等.传染病动力学的数学建模与研究[M].北京:科学出版社, 2004. [7] 王稳地.一个竞争模型的一致持续生存[J].生物数学学报, 1991, 6(2):164-169. doi: http://www.cnki.com.cn/Article/CJFDTotal-SWSX199102008.htm [8] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=56f3c50c3069603de4e5ad8c4e6ccaf4 WANG W D, ZHAO X Q. Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments[J]. J Dyn Differ Equ, 2008, 20(3):699-717. [9] MARTCHEVA M. A Non-Autonomous Multi-Strain SIS Epidemic Model[J]. J Biol Dynam, 2009, 3(2-3):235-251. [10] SMITH H L, WALTMAN P. The Theory of the Chemostat:Dynamics of Microbial Competition[M]. Cambridge:Cambridge University Press, 1995. [11] LIU W M, LEVIN S A, IWASA Y. Influence of Nonlinear Incidence Rates upon the Behavior of SIRS Epidemiological Models[J]. J Math Biol, 1986, 23(2):187-204. [12] doi: https://www.journals.uchicago.edu/doi/10.1086/285774 BRIGGS C J, GODFRAY H C J. The Dynamics of Insect-Pathogen Interactions in Stage-Structured Population[J]. Am Nat, 1995, 145(6):855-887.