-
黎曼流形上r次调和形式空间的性质与流形的拓扑性质之间有着密切的联系,如著名的Hodge-de Rham定理指出:紧致m维黎曼流形Mm上r(0≤r≤m)次调和形式空间的维数与其第r个贝蒂数相等;在非紧情形下,L2调和r-形式空间与r次可约化上同调群同构,且其非抛物端的个数不超过L2调和1-形式空间的维数加1[1-2].因此,对黎曼流形上调和形式的讨论具有重要意义.
文献[3]证明了:欧氏空间$\mathbb{R}$m+1中可定向完备的非紧稳定极小超曲面上不存在非平凡的L2调和1-形式.随后,文献[4-5]在外围空间满足一定曲率假设的条件下,将文献[3]的工作完全推广到任意流形中具有常数平均曲率的子流形上.文献[6]去掉了稳定性的假设,对欧氏空间$\mathbb{R}$m+n中的完备极小子流形Mm考虑类似的问题,并在Mm更弱的几何假设下,即Mm的第二基本型A满足$\int_{M}|A|^{m} \mathrm{d} M < C_{1}$ (C1是常数)的条件下,得到了文献[3]中同样的结论,并进一步证明了Mm仅有一个端.文献[7]考虑了Hadamard流形中的完备非紧子流形的情形,对Mm的Laplace算子的第一特征值作一定的限制,在全曲率有限或有界的条件下,分别证明了该类子流形上非平凡的L2调和1-形式空间的维数有限或为0.对于球空间$\mathscr{S}$m+n中的子流形Mm,文献[8-9]同样对Mm的全曲率作一定的限制后,得到了关于L2调和1-形式的消灭定理以及有限性定理.
相比而言,L2调和形式的消灭定理及其应用较为常见,而对Lp调和形式[10](p≥2)、Lp调和1-形式的讨论更为困难,进展更为缓慢.文献[11]对黎曼流形中的完备非紧稳定极小超曲面的Laplace算子的第一特征值作以限制,得出了L2p调和1-形式的消灭定理.文献[12]推广了文献[7]关于L2调和1-形式的结论,得到了Hadamard流形中完备非紧子流形上Lp调和1-形式的消灭定理及有限性定理.
记A1(M)表示流形Mm上1次外微分形式空间,则Mm上的Lp调和1-形式空间为
受上述工作的启发,本文考虑球空间中完备非紧子流形上的非平凡Lp调和1-形式的不存在性问题,得到如下两个消灭定理:
定理1 设Mm(m≥3)是球空间$\mathscr{S}$m+n中完备非紧子流形.如果存在一个正常数Λ,使得Mm的全曲率满足‖Φ‖Lm(M)<Λ,则H1(Lp(M))={0}(p≥2),即Mm上不存在非平凡的Lp调和1-形式.特别地,可取
其中C0为引理1中的正常数.
定理2 设Mm(m≥3)是球空间$\mathscr{S}$m+n中完备非紧子流形.如果无迹张量Φ满足
则H1(Lp(M))={0}(p≥2),即M上不存在非平凡的Lp调和1-形式.
设Mm(m≥3)是球空间$\mathscr{S}$m+n中的完备非紧子流形,A,H分别表示Mm的第二基本形式和平均曲率向量,无迹张量Φ定义为Φ(X,Y)=A(X,Y)-〈X,Y〉H,其中X,Y为Mm上的切向量场,〈·,·〉是Mm上的诱导度量.直接计算得|Φ|2=|A|2-m|H|2.易见,Φ=0当且仅当子流形Mm是全脐的[13].
引理1[8] 设Mm(m≥3)是球空间$\mathscr{S}$m+n中的完备非紧子流形,则对任意f∈C0∞(M),有
其中C0>0是仅依赖于m的常数.
引理2[14] 设Mm是完备单连通黎曼流形Nm+n中的子流形,若Nm+n的截面曲率KN≥k(常数).则对任意ω∈A1(Mm),有
其中ω#是ω的对偶向量场,Ric是子流形Mm的Ricci曲率张量.
引理3[15] 设Mm是m维黎曼流形.则对任意ω∈A1(M),有
其中ω#是ω的对偶向量场.
对黎曼流形上的调和1-形式ω,成立Kato不等式[16]
因此,对任意ω∈H1(Lp(M))(p≥2),结合引理2和引理3,直接计算可得
此外,对任意的p≥2,直接计算有
联立(1),(2)式,便有
定理1的证明 任取η∈C0∞(M),对(3)式两边同时乘以η2,并在Mm上积分(以下为方便起见,积分都省去体积元),则有
一方面,对(4)式左边项运用散度定理及Cauchy-Schwarz不等式,即对任意常数c>0,有
同理,对(4)式右边第4项运用Cauchy-Schwarz不等式,对任意的a>0,有
另一方面,运用Hölder不等式,结合引理1和Cauchy-Schwarz不等式,对任意b>0,记
有
将(5),(6)式代入(4)式,并结合(7)式,可以得到
记
则C,D,E,F分别为
记Bx0(r)为Mm上以固定点x0∈Mm为球心,r为半径的测地球.取Mm上的光滑函数η,使得
则(8)式中各项在Mm上的积分可看作是在Bx0(r),Bx0(2r)\Bx0(r),M\Bx0(2r)这3部分区域上的积分和,由η的取值易得
显然,F>0.令r→∞,因为ω∈H1(Lp(M)),所以(9)式右边趋于0.当C>0,D>0,E>0时,便有|ω|=0,即ω=0,M上不存在非平凡的Lp调和1-形式.下证存在Λ>0,使得当S(η)<Λ时有C>0,D>0,E>0,并给出Λ>0取值的具体估计.由于E>D,故只需适当选取Λ使得C>0,且D>0即可.
取足够小的b,c,由C的表达式,当S(η)<Λ时,C>0当且仅当
令
则函数f1:(0,∞)$\mathbb{R}$是增函数,且当a→∞时,有
因此,选取Λ,使得Λ2
$<\frac{(4(p-1)(m-1)+4) m}{C_{0} p^{2}(m-1)^{2}}$ 时有C>0.同理,由D的表达式,当S(η)<Λ时,D>0当且仅当
令
则函数f2:(0,∞)$\mathbb{R}$是凸函数,且在
$a=\sqrt{\frac{m}{m-1}}$ 处取得最大值由此可见,选取Λ使得Λ2
$<\frac{1}{C_{0} m(m-1)}$ 时,便有D>0.因此,当S(η)<Λ时,要使得C>0,且D>0,对任意的a>0,只需Λ2=min{f1(a),f2(a)}.由上述讨论,f1(a)在(0,∞)上是增函数,f2(a)在(0,∞)上是凸函数,且
故取
$a=\sqrt{\frac{m}{m-1}}$ .则当2≤p≤4m+$\sqrt{16 m^{2}-\frac{8 m(m-2)}{m-1}}$ 时,f2(a)≤f1(a),取即
当p>4m+
$\sqrt{16 m^{2}-\frac{8 m(m-2)}{m-1}}$ 时,f2(a)>f1(a),取即
定理1证毕.
定理2的证明 对ω∈H1(Lp(M))(p≥2),将(5),(6)式代入(4)式,有
整理(10)式便有
其中C,D,E,F分别为
显然F>0,取足够小的c>0,0<a<
$\frac{2 \sqrt{m(m-1)}}{(m-2)}$ ,则有C>0,且E>0.此时D>0当且仅当设
$f_{3}(a)=\frac{(p-1)(m-1)}{B(m, a)}$ ,则f3(a)在(0,$\frac{2 \sqrt{m(m-1)}}{m-2}$ )上是增函数,且supf3(a)=$\frac{4(m-1)}{m}$ ,由a的任意性,令$a \rightarrow \frac{2 \sqrt{m(m-1)}}{m-2}$ ,则当即
时,就有D>0.
同理,记Bx0(r)为M上以固定点x0∈M为球心r为半径的测地球,由η∈C0∞(M)的任意性可得
令r→∞,由于ω∈H1(Lp(M)),(12)式右边项趋于0.当
$\mathop {\sup }\limits_{x \in M} |\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}| < 2\frac{{\sqrt {m(m - 1)} }}{m}$ 时已证得C>0,E>0,D>0,所以|ω|=0,即ω=0,Mm上不存在非平凡的Lp调和1-形式.定理2证毕.
The Vanishing Theorems of Lp Harmonic 1-Forms on Submanifolds in Spheres
-
摘要: 设Mm(m ≥ 3)是m+n维球空间Sm+n中的m维完备定向非紧子流形,考虑子流形Mm上的Lp(p ≥ 2)调和1-形式的存在性问题.记Φ为子流形Mm的无迹张量,则Mm的全曲率定义为$\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}{_{{L^m}(M)}} = {\left( {\int_M | \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}{|^m}{\rm{d}}M} \right)^{\frac{1}{m}}}$,其中dM表示Mm的体积元.首先,在子流形Mm的全曲率有正上界的假设条件下,特别地,该正上界的取值仅依赖于子流形Mm的维数m和p,使用Bochner公式及球空间中子流形Ricci曲率的下界估计和Sobolev不等式,并利用截断函数法和Lp条件,得到了子流形Mm上不存在非平凡的Lp调和1-形式,即Lp调和1-形式的消灭定理.其次,考虑逐点条件,假设子流形Mm的无迹张量Φ的最大模函数有正上界,该正上界的取值仅依赖于m,使用同样的方法,证明了Mm上不存在非平凡的Lp调和1-形式.Abstract: Let Mm(m ≥ 3) be a complete noncompact submanifold in sphere Sm+n. Studying the vanishing theorems of Lp(p ≥ 2) harmonic 1-forms on Mm. Let Φ denote the traceless second fundamental form of Mm, then the total curvature of Mm be defined by $\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}{_{{L^m}(M)}} = {\left( {\int_M | \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}{|^m}{\rm{d}}M} \right)^{\frac{1}{m}}}$, where dM denotes the volume element of Mm. First, assume that the total curvature of Mm is less than a constant which only depends on the dimension of Mm and p, it shows that there is no nontrivial Lp harmonic 1-forms on Mm byusing Bochner formula, the bottom estimate of Ricci curvature and Sobolev inequality of Mm in spheres, themethod of cut off function and the condition of Lp. Second, assume that the maximal norm of Φ arebounded from above by a constant only depends on m, it shows that there is no nontrivial Lp harmonic 1-forms on Mm by using the same method.
-
Key words:
- Lp harmonic 1-forms /
- vanishing theorem /
- total curvature /
- traceless tensor .
-
[1] CARRON G. L2 Harmonic Forms on Non Compact Manifolds[J/OL]. 2007: arXiv: 0704.3194[math. DG]. https://arXiv.org/abs/0704.3194. [2] CHOI H, SEO K. Lp Harmonic 1-Forms on Minimal Hypersurfaces with Finite Index[J]. J Geom Phys, 2018, 129:125-132. doi: 10.1215/S0012-7094-01-11021-1 [3] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1302.6160 PALMER B. Stability of Minimal Hypersurfaces[J]. Comment Math Helv, 1991, 66(1):185-188. [4] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=864c926a6b832c7e31913b89ed0de65d TANNO S. Lp Harmonic Forms and Stability of Minimal Hypersurfaces[J]. J Math Soc Japan, 1996, 48(4):761-768. [5] CHENG X. Lp Harmonic Forms and Stability of Hypersurfaces with Constant Mean Curvature[J]. Bol Sol Beas Mat, 2000, 31(2):225-239. doi: 10.1007/bf01244246 [6] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c3b586cecfd30db1a610d671344320aa NI L. Gap Theorems for Minimal Submanifolds in Rn+1[J]. Gomm Anal Geom, 2001, 9(3):641-656. [7] CAVALCANTE M P, MIRANDOLA H, VITÓRIO F. Lp Harmonic 1-Forms on Submanifolds with Finite Total Curvature[J]. J Geom Anal, 2014, 24(1):205-222. doi: 10.1007/s12220-012-9334-0 [8] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c5879694475244a3496acdf8a4acf809 ZHU P, FANG S W. A Gap Theorem on Submanifolds with Finite Total Curvature in Spheres[J]. J Math Anal Appl, 2014, 413(1):195-201. [9] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=392f91a381d82f287303042436a5e795 ZHU P, FANG S W. Finiteness of Non-Parabolic Ends on Submanifolds in Spheres[J]. Ann Global Anal Geom, 2014, 46(2):187-196. [10] 周俞洁, 张泽宇, 王林峰.黎曼流形上p-Laplace算子的Liouville定理[J].西南大学学报(自然科学版), 2017, 39(10):62-68. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201710009&flag=1 [11] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=864c926a6b832c7e31913b89ed0de65d SEO K. Lp Harmonic 1-Forms and First Eigenvalue of a Stable Minimal Hypersurface[J]. Pacific J Math, 2014, 268(1):205-229. [12] HAN Y B, PAN H. Lp Harmonic 1-Forms on Submanifolds in a Hadamard Manifold[J]. J Geom Phys, 2016, 107:79-91. doi: 10.1016/j.geomphys.2016.05.006 [13] 马蕾, 刘建成.局部对称空间中常平均曲率超曲面的拼挤定理[J].西南师范大学学报(自然科学版), 2019, 44(2):5-9. doi: http://d.old.wanfangdata.com.cn/Periodical/xnsfdxxb201902002 [14] SHIOHAMA K, XU H W. The Topological Sphere Theorem for Complete Submanifolds[J]. Compos Math, 1997, 107(2):221-232. doi: 10.1023/a:1000189116072 [15] LI P. Lecture Notes on Geometric Analysis[D]. California: University of California, 1996. [16] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_math%2f9909116 GALDERBANK D M, GAUDUCHON P, HERZLICH M. Refined Kato Inequalities and Conformal Weights in Riemannian Geometry[J]. J Funct Anal, 2000, 173(1):214-255.
计量
- 文章访问数: 660
- HTML全文浏览数: 660
- PDF下载数: 70
- 施引文献: 0