-
调和方程的Liouville定理是经典的结果.经典的Liouville定理是说:当调和函数有界时,函数是常数.在各种条件下研究偏微分方程的Liouville定理是人们关注的热点问题.文献[1]证明了:具有非负Ricci曲率的Riemann流形上的非负调和方程的解是常数.文献[2]作了进一步推广,证明了:流形上次线性增长的调和方程的解也是常数.文献[3]得到了Heisenberg群
${\mathbb{N}}$ n上退化椭圆半线性方程有界解的Liouville定理.关于欧氏空间和推广空间上的Liouville定理,可以参见文献[4-7].受到文献[2]的启示,本文研究群
${\mathbb{N}}$ n上次Laplace方程解的Liouville定理,即研究${\mathbb{N}}$ n上的次Laplace方程的解在满足次线性增长条件下的Liouville定理.与文献[3]中的结论不同,本文对方程(1)的有界性条件有所减弱.
The Liouville Theorem for the Sub-linear Growth Sub-Laplace Equation on the Heisenberg Group
-
摘要: 给出了Heisenberg群上次Laplace方程解的在满足次线性增长时的Liouville型定理,证明过程借助于Heisenberg群上的平均值公式.
-
关键词:
- 次Laplace方程 /
- 次线性增长 /
- Liouville定理
Abstract: In this paper, we give the Liouville theorem to the sub-Laplace equation on the Heisenberg group whose solutions satisfy the sub-linear growth condition. In the process of proof we use the mean value formula on the Heisenberg group.-
Key words:
- sub-Laplace equation /
- sub-linear growth /
- Liouville theorem .
-
[1] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_math%2f9903172 YAU S T. Harmonic Functions on Complete Riemannian Manifolds[J]. Comm Pure Appl Math, 1975, 28(2): 201-228. [2] doi: http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_e2d6bfb953739ed439624c3731864f72 CHENG S Y. Liouville Theorem for Harmonic Maps[J]. Proc Symp Pure Math, 1980, 36: 147-151. [3] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=413ae77b6068a70ecfeb430e92102c7e BIRINDELLI I, CAPUZZO DOLCETTA I, CUTRI A. Liouville Theorems for Semilinear Equations on the Heisenberg Group[J]. Ann Inst Henri Poincare, 1997, 14(3): 295-308. [4] 王胜军, 窦井波. Heisenberg型群上的广义Picone恒等式及其应用[J].西南大学学报(自然科学版), 2020, 42(2): 48-54. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2020.02.008 [5] 周俞洁, 张泽宇, 王林峰.黎曼流形上p-Laplace算子的Liouville定理[J].西南大学学报(自然科学版), 2017, 39(10): 62 -68. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2017.10.009 [6] 王胜军, 韩亚洲. Baouendi-Grushin p-退化椭圆算子的广义Picone恒等式及其应用[J].西南师范大学学报(自然科学版), 2018, 43(3): 1-6. doi: http://d.old.wanfangdata.com.cn/Periodical/xnsfdxxb201803001 [7] BIRINDELLI I, DEMENGEL F. Some Liouville Theorems for the p-Laplacian[EB/OL]. [2019-10-20]. https: //arXiv. org/abs/math/0106231. [8] doi: http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025481511/ HORMANDER L. Hypoelliptic Second Order Differential Equations[J]. Acta Math, 1967, 119: 147-171. [9] BONY J M. Principe du Maximum, Inégalité de Harnack et Unicité du Probleme de Cauchy Pour Les Operateurs Ellipitiques Degeneres[J]. Ann Inst Fourier Grenobles, 1969, 19(1): 277-304. [10] doi: http://d.old.wanfangdata.com.cn/NSTLQK/10.1090-S0002-9904-1973-13171-4/ FOLLAND G B. A Fundamental Solution for a Subelliptic Operator[J]. Bull Amer Math Soc, 1973, 79(2): 373-377. [11] doi: https://www.ams.org/journals/proc/1975-047-02/S0002-9939-1975-0370044-2/S0002-9939-1975-0370044-2.pdf FOLLAND G B. Spherical Harmonic Expansion of the Poisson-Szego Kernel for the Ball[J]. Proceedings of the American Mathematical Society, 1975, 47(2): 401-408. [12] doi: http://www.researchgate.net/publication/265681637_Frequency_functions_on_the_Heisenberg_group_the_uncertainty_principle_and_unique_continuation GAROFALO N, Lanconelli E. Frequency Functions on the Heisenberg Group, the Uncertainty Principle and Unique Continuation[J]. Annales De I'Institut Fourier, 1990, 40(2): 313-356. [13] doi: https://projecteuclid.org/download/pdf_1/euclid.acta/1485889966 GAVEAU B. Principe de Moindre Action, Propagation de la Chaleur et Estimees Sous Elliptiques sur Certains Groupes Nilpotents[J]. Acta Math, 1977, 139: 95-153. [14] doi: https://link.springer.com/10.1007/BF01214381 CHENG S Y. Eigenvalue Comparison Theorems and Its Geometric Applications[J]. Math Z, 1975, 143(3): 289-297. [15] LI P. Geometric Analysis[M]. Cambridge: Cambridge University Press, 2012: 57-66. [16] HAN Q, LIN F H. Elliptic Partial Differential Equations[M]. Providence, Rhode Island: American Mathematical Society, 2000.
计量
- 文章访问数: 789
- HTML全文浏览数: 789
- PDF下载数: 69
- 施引文献: 0