留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

分段双加权伪概周期函数的复合定理

上一篇

下一篇

宋娜, 夏正德. 分段双加权伪概周期函数的复合定理[J]. 西南大学学报(自然科学版), 2021, 43(2): 103-109. doi: 10.13718/j.cnki.xdzk.2021.02.014
引用本文: 宋娜, 夏正德. 分段双加权伪概周期函数的复合定理[J]. 西南大学学报(自然科学版), 2021, 43(2): 103-109. doi: 10.13718/j.cnki.xdzk.2021.02.014
SONG Na, XIA Zheng-de. The Compound Theorem for Piecewise Double-Weighted Pseudo-almost Periodic Functions[J]. Journal of Southwest University Natural Science Edition, 2021, 43(2): 103-109. doi: 10.13718/j.cnki.xdzk.2021.02.014
Citation: SONG Na, XIA Zheng-de. The Compound Theorem for Piecewise Double-Weighted Pseudo-almost Periodic Functions[J]. Journal of Southwest University Natural Science Edition, 2021, 43(2): 103-109. doi: 10.13718/j.cnki.xdzk.2021.02.014

分段双加权伪概周期函数的复合定理

  • 基金项目: 山西省青年科技研究基金项目(201901D211275)
详细信息
    作者简介:

    宋娜,博士,讲师,主要从事概周期理论的研究 .

  • 中图分类号: O29

The Compound Theorem for Piecewise Double-Weighted Pseudo-almost Periodic Functions

  • 摘要: 研究了分段双加权伪概周期函数的复合定理.首先将复合函数分解为分段概周期函数与剩余部分的和,利用平移不变性证明了除去分段概周期函数部分剩余的应该是双加权函数,进一步证明了两个分段双加权伪概周期函数复合之后依然是分段双加权伪概周期函数.然后介绍了双加权伪概周期序列,并研究了双加权伪概周期序列与分段双加权伪概周期函数的关系,进一步证明了双加权伪概周期函数与双加权伪概周期序列的复合函数依然为双加权伪概周期序列.
  • 加载中
  • [1] DIAGANA T. Weighted Pseudo Almost Periodic Functions and Applications[J]. Comp Rend Math, 2006, 343(10): 643-646. doi: 10.1016/j.crma.2006.10.008
    [2] ZHANG L L, LI H X. Weighted Pseudo Almost Periodic Solutions of Second-Order Neutral-Delay Differential Equations with Piecewise Constant Argument[J]. Comput Math Appl, 2011, 62(12): 4362-4376. doi: 10.1016/j.camwa.2011.10.004
    [3] doi: http://www.sciencedirect.com/science/article/pii/S0362546X09002909 NADIRA B H, EZZINBI K. Weighted Pseudo Almost Periodic Solutions for Some Partial Functional Differential Equations[J]. Nonlinear Anal, 2009, 71(3): 3612-3621.
    [4] CUEVAS C, PINTO M. Existence and Uniqueness of Pseudo-Almost Periodic Solutions of Semilinear Cauchy Problem with Non Dense Domain[J]. Nonlinear Anal, 2001, 45(1): 73-83. doi: 10.1016/S0362-546X(99)00330-2
    [5] AGARWAL R P, ANDRADE B, CUEVAS C. Weighted Pseudo Almost Periodic Solutions of a Class of Semilinear Fractional Differential Equations[J]. Nonlinear Anal Real World Appl, 2010, 11(5): 3532-3554. doi: 10.1016/j.nonrwa.2010.01.002
    [6] DIAGANA T. Pseudo Almost Periodic Functions in Banach Spaces[M]. New York: Nova Science Publishers, 2007.
    [7] ZHANG L L, LI H X. Weighted Pseudo-Almost Periodic Solutions for Some Abstract Differential Equations with Uniform Continuity[J]. Bull Aust Math Soc, 2010, 82(3): 424-436. doi: 10.1017/S0004972710001772
    [8] doi: http://www.sciencedirect.com/science/article/pii/S0362546X05008898 ZHANG L L, LI H X. Weighted Pseudo Almost Periodic Solutions of Second Order Neutral Differential Equations with Piecewise Constant Argument[J]. Nonlinear Anal, 2011, 74(2): 6770-6780.
    [9] SHAIR A, GANI T S. On Almost Periodic Processes in Impulsive Competitive Systems with Delay and Impulsive Perturbations[J]. Nonlinear Anal Real World Appl, 2009, 10(5): 2857-2863. doi: 10.1016/j.nonrwa.2008.09.003
    [10] DIAGANA T. Doubly-Weighted Pseudo-Almost Periodic Functions[J/OL]. African Diaspora Journal of Mathematics New, 2010, 14: 1-17.[2020-03-05]. https://arxiv.org/abs/1012.3043.
    [11] LIU J W, ZHANG C Y. Composition of Piecewise Pseudo Almost Periodic Functions and Applications to Abstract Impulsive Differential Equations[J]. Advance Differential Equation, 2013, 2013: 1-11. doi: 10.1186/1687-1847-2013-11
    [12] SONG N, LI H X, CHEN C H. Piecewise Weighted Pseudo Almost Periodic Functions and Applications to Impulsive Differential Equations[J]. Math Slovaca, 2016, 66(5): 1-18.
    [13] 夏正德, 宋娜.分段双加权伪概周期函数及其分解唯一性[J].数学的实践与认识, 2019, 49(24): 231-236. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201924030.htm
    [14] EDUARDO H M, MARCO R, HERNÁN R H. Existence of Solutions for Impulsive Partial Neutral Functional Differential Equations[J]. J Math Anal Appl, 2007, 331(2): 1135-1158. doi: 10.1016/j.jmaa.2006.09.043
    [15] LIANG J, XIAO T J, ZHANG J. Decomposition of Weighted Pseudo-Almost Periodic Functions[J]. Nonlinear Anal, 2010, 73(10): 3456-3461. doi: 10.1016/j.na.2010.07.034
    [16] doi: http://www.ams.org/mathscinet-getitem?mr=2781063 DIAGANA T. Existence of Doubly-Weighted Pseudo Almost Periodic Solutions to Non-Autonomous Differential Equations[J]. Electron J Diff Equ, 2011, 28: 1-15.
    [17] doi: http://www.springerlink.com/content/u3076543256kj5xj/ LIU J W, ZHANG C Y. Existence and Stability of Almost Periodic Solutions for Impulsive Differential Equations[J]. Advance Differential Equation, 2012, 2012: 1-34.
    [18] STAMOV G T. On the Existence of Almost Periodic Solutions for the Impulsive Lasota-Wazewska Model[J]. Appl Math Lett, 2009, 22(4): 516-520. doi: 10.1016/j.aml.2008.07.002
    [19] STAMOV G T, ALZABUT J O. Almost Periodic Solutions for Abstract Impulsive Differential Equations[J]. Nonlinear Anal, 2010, 72(5): 2457-2464. doi: 10.1016/j.na.2009.10.042
    [20] CUEVAS C, HERNÁNDEZM E, RABELO M. The Existence of Solutions for Impulsive Neutral Functional Differential Equations[J]. Comput Math Appl, 2009, 58(4): 744-757. doi: 10.1016/j.camwa.2009.04.008
    [21] doi: http://www.researchgate.net/publication/320039826_Almost_periodic_solutions_for_impulsive_Lasota-Wazewska_model_with_discontinuous_coefficients SONG N, XIA Z D. Almost Periodic Solutions for Impulsive Lasota-Wazewska Model with Discontinuous Coefficients[J]. International Mathematical Forum, 2017, 12(17): 841-852.
    [22] SONG N, XIA Z D, HOU Q. The Study of Piecewise Weighted Pseudo Almost Periodic Solutions for Implusive Lasota-Wazewska Model with Discontinuous Coefficients[J]. Mathematica Slovaca, 2020, 70(2): 343-360. doi: 10.1515/ms-2017-0356
    [23] 姚晓洁, 秦发金.一类具有脉冲和收获率的Lotla-Volterra合作系统的4个正概周期解[J].西南师范大学学报(自然科学版), 2016, 41(11): 7-14. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201611002.htm
    [24] 王春生, 李永明.多变时滞Volterra型动力系统的稳定性[J].西南大学学报(自然科学版), 2019, 41(7): 62-69. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2019.07.009
    [25] doi: http://www.ams.org/mathscinet-getitem?mr=2784886 HERNÁN R H, ANDRADE B D, RABELO M. Existence of Almost Periodic Solutions for a Class of Abstract Impulsive Differential Equations[J]. ISRN Math, 2011, 2011: 1-21.
  • 加载中
计量
  • 文章访问数:  1718
  • HTML全文浏览数:  1718
  • PDF下载数:  103
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-04-07
  • 刊出日期:  2021-02-20

分段双加权伪概周期函数的复合定理

    作者简介: 宋娜,博士,讲师,主要从事概周期理论的研究
  • 中北大学 理学院,太原 030051
基金项目:  山西省青年科技研究基金项目(201901D211275)

摘要: 研究了分段双加权伪概周期函数的复合定理.首先将复合函数分解为分段概周期函数与剩余部分的和,利用平移不变性证明了除去分段概周期函数部分剩余的应该是双加权函数,进一步证明了两个分段双加权伪概周期函数复合之后依然是分段双加权伪概周期函数.然后介绍了双加权伪概周期序列,并研究了双加权伪概周期序列与分段双加权伪概周期函数的关系,进一步证明了双加权伪概周期函数与双加权伪概周期序列的复合函数依然为双加权伪概周期序列.

English Abstract

  • 文献[1]推广了伪概周期函数,介绍了加权伪概周期函数及其相关性质.许多的工作都是围绕着微分方程的加权伪概周期解展开的[2-9].文献[10]给出了双加权伪概周期函数的概念,进一步推广了伪概周期函数.随着脉冲微分方程的发展,概周期理论得到进一步的发展,分段伪概周期函数、分段加权伪概周期函数与分段双加权伪概周期函数相继被提出[11-13].关于微分方程,数学工作者做了许多的工作[14-24].本文的工作是对分段双加权伪概周期函数[25]研究的延续,主要介绍了分段双加权伪概周期函数的复合定理,以及双加权伪概周期函数与双加权伪概周期序列之间的关系.

  • 现在介绍分段加权伪概周期函数的概念.首先定义集合U为加权函数全体{μ:ℝ→(0,∞)},则

    加权函数具有如文献[2]中定义的加权函数的相关性质,在此将不再赘述.对于ρυUS>0,fPCT(ℝ,X),定义

    分段双加权遍历空间PPAPT0(Xρυ)和PPAPT0(ΩXρυ),有如下定义:

    PPAPT0(Xρυ)在上确界范数下是Banach空间.分段双加权伪概周期函数空间为

    定理1  令fPPAPT(ΩXρυ)且hPPAPT(Ωρυ).假设下面的条件成立:

    (H1) $\rho \in U_T^0, v \in {U_\infty }, \mathop {\inf }\limits_{S > 0} \frac{{\mu (S, v)}}{{\mu (S, \rho )}} > 0, {\rm{且}}\mathop {\lim }\limits_{S > 0} \frac{{\mu (S, v)}}{{\mu (S, \rho )}} < \infty $

    (H2) f(t,·)对∀t∈ℝ在每个有界子集Ω上是一致连续的,即对∀ε>0和有界集KΩ,存在δ>0,使得当xyK且‖x-y‖<δ时,‖f(tx)-f(ty)‖<ε对∀t∈ℝ成立;

    (H3) f(ℝ,K)={f(tx):t∈ℝ,xK}对每个有界子集KΩ是有界的.

    R(h)⊂K,那么f(th(t))∈PPAPT(Xρυ).

      因为fPPAPT(ΩXρυ),hPPAPT(Ωρυ),所以f=fap+feh=hap+he.则函数f(·,h(·))可以做如下的分解:

    由于R(hap)在X上是相对紧的,则∀t∈ℝ,fap(t,·)在R(hap)上是一致连续的.由文献[11]的定理3.1,容易看出fap(·,hap(·))∈APT(ℝ,X).下面证明

    步骤1  证明f(·,h(·))-f(·,hap(·))∈PPAPT0(Xρυ).

    KΩ是有界的,使得R(h),R(hap)⊂K.由条件(H3),存在M>0使得

    同时,由条件(H2),对于ε>0,存在δ>0,使得当xyK且‖x-y‖<δ时,有

    因为hePPAPT0(Ωρυ),根据条件(H1),有

    其中

    因此存在MS0>0,使得当SS0时,有

    又因为

    所以

    由平移不变性可得,对SS0,有

    步骤2  证明fe(·,hap(·))∈PPAPT0(Xρυ).

    因为f=fap+fe,且当t∈ℝ时,fap(t,·)在R(hap)上是一致连续的.那么由条件(H2)可知,fe(tx)=f(tx)-fap(tx)关于txR(hap)上是一致连续的.即对于ε>0,存在δ>0,使得当xyR(hap)且‖x-y‖<δ时,有

    R(hap)在X上是相对紧的,则对ε>0,可以找到有限n个以x1x2,…,xnR(hap)为中心的开球Ok,使得$R\left( {{h^{ap}}} \right) \subset \bigcup\limits_{k = 1}^n {{O_k}} $

    集合Bk={t∈ℝ:hap(t)∈Ok}是开的,并且$R = \bigcup\limits_{k = 1}^n {{B_k}} $.令

    那么当ij,1≤ijn并且 $R = \bigcup\limits_{k = 1}^n {{E_k}} $ 时,EiEj=Ø.

    因为fe(·,xk)∈PPAPT0(ΩXρυ),所以存在S0>0,使得

    因此对于SS0,有

    fe(·,hap(·))∈PPAPT0(Xρυ).

  • Vs为序列(加权)σ:ℤ→(0,+∞)的集合.对于σVsT∈ℤ+,令

    定义1  令σ,ϑ∈Vs,序列{x(n)}:ℤ→X是有界的且满足

    那么序列{x(n)}被称为σ,ϑ-PAP0序列,我们用PAP0S(Xσ,ϑ)来标记.

    类似于文献[12]中引理2.1的证明,可以得到下面的引理:

    引理1  令σ,ϑ∈Vs.如果

    x:ℤ→X是有界的.对∀ε>0,S>0,S∈ℤ,定义

    xPAP0S(Xσ,ϑ)的充分必要条件是$\mathop {\lim }\limits_{S \to \infty } \frac{{{\mu _s}\left( {{M_{S, \varepsilon }}(x), \vartheta } \right)}}{{{\mu _s}(n, \sigma )}} = 0$.

    定义

    那么

    $\hat \sigma (j), \hat \vartheta (j)$的定义可看出:$\mathop {\lim }\limits_{n \to \infty } \frac{{\sum\limits_{i = - n}^n {\hat \vartheta } (i)}}{{\sum\limits_{i = - n}^n {\hat \sigma } (i)}} < \infty $的充分必要条件是$\mathop {\lim }\limits_{s \to \infty } \frac{{\int_{ - s}^s v (t){\rm{d}}t}}{{\int_{ - s}^s \rho (t){\rm{d}}t}} < \infty $.

    类似于文献[12]中引理2.6和定理2.5的证明,容易得到下面的两个引理:

    引理2  令uPPAPT0(Xρυ).那么

    引理3  序列{an}n∈ℤPAP0S(X$\hat \sigma , \hat \vartheta $)的充分必要条件是:存在aPPAPT0(Xρυ)∩UPCT(ℝ,X),使得a(tn)=ann∈ℤ.进一步,PAP0S(X$\hat \sigma , \hat \vartheta $)是平移不变的.

    定理2  令{Ii(x)}∈PAPS(X$\hat \sigma , \hat \vartheta $),xΩ.当u(ℝ)⊂Ω时,uPPAPT(Xρυ)∩UPCT(ℝ,X).如果下面的条件成立:

    (H4) {Ii(u):n∈ℤ,uK}在每个子集KΩ上是有界的;

    (H5)当i∈ℤ时,Ii(u)在uΩ处一致连续.

    那么{Ii(u(ti))}∈PAPS(X$\hat \sigma , \hat \vartheta $).

      类似于文献[12]中引理3.7的证明,容易证明{uap(ti)}∈APS(X).此外,由引理3可得{ue(ti)}∈PAP0S(X$\hat \sigma , \hat \vartheta $),所以{u(ti)}∈PAPS(X).根据文献[13]的引理3,当y1y2Ω时,有

    结合条件(H5)可得,当i∈ℤ时,Iiap(u)是关于uΩ一致连续的,且Iie(u)也是一致连续的.定义

    那么

    由文献[11]的定理3.4,容易看出{P1(i)}∈APS(X).所以下面只需要证明{P2(i)}∈PAP0S(X$\hat \sigma , \hat \vartheta $).

    注意到{u(ti)}和uap(ti)是有界的.令KΩ是有界的,使得u(ti),uap(ti)⊂Ki∈ℤ.由条件(H5),对∀ε>0,存在δ1>0使得

    容易看出K1={uap(ti):i∈ℤ}是相对紧的.因为当i∈ℤ时,IieuK1处是一致连续的.那么对ε>0,存在$0 < \delta < \max \left\{ {{\delta _1}, \frac{\varepsilon }{4}} \right\}$使得当y1y2K1且‖y1-y2‖<δ时,有

    由于K1是相对紧的,则存在x1,…,xmK1使得对每个i,有

    所以如果‖Iie(xk)‖<δ,那么

    因此,如果‖ue(ti)‖<δ且‖Iie(xk)‖<δk=1,2,…,m,那么

    此外,对于S>0,有

    因为{ue(ti)},{Iie(xk)}∈PAP0S(X$\hat \sigma , \hat \vartheta $),k=1,…,m,由文献[13]的引理1以及定理1,可得

    因此

    所以P2PAP0S(X$\hat \sigma , \hat \vartheta $).

参考文献 (25)

目录

/

返回文章
返回